Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 150(19): 194302, 2019 May 21.
Article in English | MEDLINE | ID: mdl-31117797

ABSTRACT

We report an experimental and theoretical investigation of electron-impact single ionization of the highest occupied molecular orbital 1t2 and the next highest occupied molecular orbital 2a1 states of CH4 at an incident electron energy of 250 eV. Triple differential cross sections measured in two different laboratories were compared with results calculated within the molecular 3-body distorted wave and generalized Sturmian function theoretical models. For ionization of the 1t2 state, the binary peak was observed to have a single maximum near the momentum transfer direction that evolved into a double peak for increasing projectile scattering angles, as has been seen for ionization of atomic p-states. A detailed investigation of this evolution was performed. As expected because of its s-type character, for ionization of the 2a1 state, only a single binary peak was observed. Overall, good agreement was found between experiment and theory.

2.
J Chem Phys ; 144(16): 164305, 2016 Apr 28.
Article in English | MEDLINE | ID: mdl-27131548

ABSTRACT

Experimental and theoretical double differential cross sections (DDCSs) for electron-induced ionization of methane (CH4) are here reported for primary energies ranging from 50 eV to 350 eV and ejection angles between 25° and 130°. Experimental DDCSs are compared with theoretical predictions performed within the first Born approximation Coulomb wave. In this model, the initial molecular state is described by using single center wave functions, the incident (scattered) electron being described by a plane wave, while a Coulomb wave function is used for modeling the secondary ejected electron. A fairly good agreement may be observed between theory and experiment with nevertheless an expected systematic overestimation of the theory at low-ejection energies (<50 eV).

3.
Rapid Commun Mass Spectrom ; 26(8): 893-905, 2012 Apr 30.
Article in English | MEDLINE | ID: mdl-22396025

ABSTRACT

RATIONALE: Butane is an important industrial chemical in which photo-processes are very important for the initiation of reactions. Recent advances in nanosecond pulsed laser technology have led to high laser intensities being available to researchers to enable these photo-processes to be studied in compounds such as butane. METHODS: The photo-decomposition, dissociation and combustion mechanisms in the neutral butane molecule have been studied in detail, by investigating the multiphoton (MP) dissociative ionisation of its n- and i-isomers, using a time-of-flight mass spectrometer connected to a high power nanosecond laser system. The laser used was a Nd:Yag with a 5 ns pulse width operated at the fundamental wavelength (1064 nm) and the doubled and tripled wavelengths (532 nm and 355 nm). The fragmentation patterns for the isomers were determined for the three wavelengths as a function of laser intensity. Similar laser intensities of between 10(10) and 10(13) W/cm(2) were used at the three wavelengths: 1064, 532 and 355 nm. RESULTS: The mass spectra of each isomer of the butane molecule display a very weak molecular ion and are dominated by fragment ion peaks. The degree of fragmentation increases as the laser intensity increases. CONCLUSIONS: Depending on the wavelength some significant differences in the mass spectra of the two isomers were detected and it has been concluded that the isomerisation of i-butane to n-butane is a process which is faster than the duration of the laser pulse used.

SELECTION OF CITATIONS
SEARCH DETAIL
...