Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Basic Microbiol ; 63(8): 877-887, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37154196

ABSTRACT

Beneficial Bacillus strains can be administered to livestock as probiotics to improve animal health. Cyclic lipopeptides produced by Bacillus such as surfactins may be responsible for some of the beneficial effects due to their anti-inflammatory and immunomodulatory activity. The aim of the present study was to isolate and evaluate the biocompatibility of native Bacillus spp. strains and their surfactin-like lipopeptides in vitro and in vivo to determine their potential to be used on animals. Biocompatibility of endospore suspensions (108 UFC/mL), and different dilutions (1:10; 1:50; 1:100; 1:500, and 1:1000) of Bacillus lipopeptide extracts containing surfactin was tested on Caco-2 cells by microculture tetrazolium-based colorimetric assay. Genotoxicity was tested on BALB/c mice (n = 6) administered 0.2 mL of endospore suspensions by the bone marrow erythrocyte micronuclei assay. All the isolates tested produced between 26.96 and 239.97 µg mL- 1 of surfactin. The lipopeptide extract (LPE) from isolate MFF1.11 demonstrated significant cytotoxicity in vitro. In contrast, LPE from MFF 2.2; MFF 2.7, TL1.11, TL 2.5, and TC12 had no cytotoxic effect (V% > 70%) on Caco-2 cells, not affecting cell viability signifficantly in most treatments. Similarly, none of the endospore suspensions affected cell viability (V% > 80%). Likewise, endospores did not cause genotoxicity on BALB/c mice. This study was elementary as a first step for a new line of research, since it allowed us to choose the safest isolates to keep working on the search of new potentially probiotic strains destined to production animals to improve their performance and health.


Subject(s)
Bacillus , Animals , Mice , Humans , Bacillus/metabolism , Lipopeptides/pharmacology , Lipopeptides/metabolism , Caco-2 Cells , Suspensions , Peptides, Cyclic/toxicity , Plant Extracts , Bacillus subtilis/metabolism
2.
Article in English | MEDLINE | ID: mdl-25421370

ABSTRACT

Laboratory-scale silos were prepared to evaluate the efficacy of two different lactic acid bacteria (LAB) on the fermentation quality and mycobiota of corn silage. Their influence on Aspergillus species' variability by using the q-PCR technique was studied. Silage inoculated with Lactobacillus rhamnosus RC007 or L. plantarum RC009 were compared with uninoculated silage. Silos were opened after 1, 7, 45, 90 and 120 days after ensiling. At the end of the ensiling period, silos were left open for 7 days to evaluate aerobic stability. Rapid lactic acid production and decline in pH values were seen in the early stages of fermentation in silage inoculated with L. rhamnosus RC007. After aerobic exposure, a significant decline in lactic acid content was observed in untreated and L. plantarum RC009-inoculated silages. Counts for yeasted and toxigenic fungus remained lower, after aerobic exposure, in L. rhamnosus RC007-inoculated silage, in comparison with L. plantarum RC009 and uninoculated silages. Comparing the influence exerted by both BAL, it was observed that L. rhamnosus RC007 was more efficient at inhibiting the three fungal species tested whose DNA concentrations, determined by q-PCR, oscillated near the initial value (pre-ensiling maize). The ability of L. rhamnosus RC007 to produce lactic acid rapidly and the decline in pH values in the early stages of the fermentation along with the reduction of yeast and mycotoxicogenic fungus after aerobic exposure shows its potential as a bio-control inoculant agent in animal feed.


Subject(s)
Aspergillus/genetics , Fermentation , Polymerase Chain Reaction , Silage/microbiology , Zea mays/chemistry , Zea mays/microbiology , Aspergillus/metabolism , Zea mays/metabolism
3.
BMC Immunol ; 9: 27, 2008 Jun 13.
Article in English | MEDLINE | ID: mdl-18554392

ABSTRACT

BACKGROUND: Microbial colonization of the intestine after birth is an important step for the development of the gut immune system. The acquisition of passive immunity through breast-feeding may influence the pattern of bacterial colonization in the newborn. The aim of this work was to evaluate the effect of the administration of a probiotic fermented milk (PFM) containing yogurt starter cultures and the probiotic bacteria strain Lactobacillus casei DN-114001 to mothers during nursing or their offspring, on the intestinal bacterial population and on parameters of the gut immune system. RESULTS: Fifteen mice of each group were sacrificed at ages 12, 21, 28 and 45 days. Large intestines were taken for determination of intestinal microbiota, and small intestines for the study of secretory-IgA (S-IgA) in fluid and the study of IgA+ cells, macrophages, dendritic cells and goblet cells on tissue samples. The consumption of the PFM either by the mother during nursing or by the offspring after weaning modified the development of bifidobacteria population in the large intestine of the mice. These modifications were accompanied with a decrease of enterobacteria population. The administration of this PFM to the mothers improved their own immune system and this also affected their offspring. Offspring from mice that received PFM increased S-IgA in intestinal fluids, which mainly originated from their mother's immune system. A decrease in the number of macrophages, dendritic cells and IgA+ cells during the suckling period in offspring fed with PFM was observed; this could be related with the improvement of the immunity of the mothers, which passively protect their babies. At day 45, the mice reach maturity of their own immune system and the effects of the PFM was the stimulation of their mucosal immunity. CONCLUSION: The present work shows the beneficial effect of the administration of a PFM not only to the mothers during the suckling period but also to their offspring after weaning and until adulthood. This effect positively improved the intestinal microbiota that are related with a modulation of the gut immune response, which was demonstrated with the stimulation of the IgA + cells, macrophages and dendritic cells.


Subject(s)
Bacteria/growth & development , Cultured Milk Products/immunology , Cultured Milk Products/microbiology , Intestines/immunology , Intestines/microbiology , Lacticaseibacillus casei , Probiotics , Animals , Cultured Milk Products/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Female , Goblet Cells/immunology , Goblet Cells/metabolism , Immunity, Innate , Immunoglobulin A, Secretory/blood , Intestinal Mucosa/cytology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestines/cytology , Lactation , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred BALB C
4.
J Dairy Res ; 73(3): 357-66, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16836803

ABSTRACT

The gastrointestinal tract is a complex and dynamic ecosystem. Commensal microorganisms (C), which proliferate in the intestine from birth, are crucial for gut homeostasis while non commensal (NC) microorganisms are transient and enter the organism from the environment and foods. We studied comparatively the influence of oral administration of C and NC Lactobacillus fermentum and Lactobacilus acidophilus on the gut-associated lymphoid tissue (GALT) of conventional mice. To determine the importance of the selection of probiotic host-specificity bacteria with immunomodulating capacity, we examined the interaction with the gut by transmission electron microscopy and FITC-labelled bacteria. We compared the immunomodulation capacities of C and NC strains by studying the number of IgA secreting cells and cytokine profile. No differences were found in the number of IgA+ cells; however, the pattern of cytokine response to C and NC bacteria was different. With regard to proinflammatory cytokine (IFNgamma and TNFalpha), we found that TNFalpha was mainly produced by NC bacteria, while C bacteria were able to elicit mainly IFNgamma. The regulatory cytokines (IL-10 and IL-4) were induced with different patterns for both C and NC strains. No differences in the pathway of internalization to the gut between C and NC were found. In summary, we determined that C and NC bacteria interact with the intestine in the same way; both C and NC bacteria were able to reinforce the surveillance of the gut mucosal immune system. The cytokine profile showed that C bacteria would be involved in the regulation of intestinal homeostasis rather than in the immune activation as the NC bacteria.


Subject(s)
Cytokines/blood , Lactobacillus acidophilus/growth & development , Limosilactobacillus fermentum/growth & development , Lymphoid Tissue , Probiotics , Administration, Oral , Animals , Cytokines/biosynthesis , Immunity, Mucosal , Immunoglobulin A/blood , Intestine, Large/microbiology , Intestine, Large/ultrastructure , Intestine, Small/microbiology , Intestine, Small/ultrastructure , Lactobacillus acidophilus/immunology , Limosilactobacillus fermentum/immunology , Lymphoid Tissue/immunology , Lymphoid Tissue/microbiology , Lymphoid Tissue/ultrastructure , Mice , Mice, Inbred BALB C , Microscopy, Electron, Transmission/veterinary , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...