Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 12949, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839839

ABSTRACT

Growth/differentiation factor-15 (GDF15) is considered an unfavourable prognostic biomarker for cardiovascular disease in clinical data, while experimental studies suggest it has cardioprotective potential. This study focuses on the direct cardiac effects of GDF15 during ischemia-reperfusion injury in Wistar male rats, employing concentrations relevant to patients at high cardiovascular risk. Initially, we examined circulating levels and heart tissue expression of GDF15 in rats subjected to ischemia-reperfusion and sham operations in vivo. We then evaluated the cardiac effects of GDF15 both in vivo and ex vivo, administering recombinant GDF15 either before 30 min of ischemia (preconditioning) or at the onset of reperfusion (postconditioning). We compared infarct size and cardiac contractile recovery between control and rGDF15-treated rats. Contrary to our expectations, ischemia-reperfusion did not increase GDF15 plasma levels compared to sham-operated rats. However, cardiac protein and mRNA expression increased in the infarcted zone of the ischemic heart after 24 h of reperfusion. Notably, preconditioning with rGDF15 had a cardioprotective effect, reducing infarct size both in vivo (65 ± 5% in control vs. 42 ± 6% in rGDF15 groups) and ex vivo (60 ± 4% in control vs. 45 ± 4% in rGDF15 groups), while enhancing cardiac contractile recovery ex vivo. However, postconditioning with rGDF15 did not alter infarct size or the recovery of contractile parameters in vivo or ex vivo. These novel findings reveal that the short-term exogenous administration of rGDF15 before ischemia, at physiologically relevant levels, protects the heart against ischemia-reperfusion injury in both in vivo and ex vivo settings. The ex vivo results indicate that rGDF15 operates independently of the inflammatory, endocrine and nervous systems, suggesting direct and potent cardioprotective properties against ischemia-reperfusion injury.


Subject(s)
Growth Differentiation Factor 15 , Myocardial Infarction , Rats, Wistar , Growth Differentiation Factor 15/metabolism , Growth Differentiation Factor 15/genetics , Animals , Male , Myocardial Infarction/metabolism , Rats , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocardium/metabolism , Myocardium/pathology , Cardiotonic Agents/pharmacology , Cardiotonic Agents/administration & dosage , Recombinant Proteins/administration & dosage , Recombinant Proteins/pharmacology , Ischemic Preconditioning, Myocardial/methods
2.
Arch Cardiovasc Dis ; 116(10): 474-484, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37659915

ABSTRACT

In an adult human, billions of cells die and turn over daily. During this process, many apoptotic cells are produced and subsequently cleared by phagocytes - a process termed efferocytosis, which plays a critical role in tissue homeostasis. Efferocytosis is an important mechanism in the control of inflammatory processes. Efficient efferocytosis inhibits accumulation of apoptotic cells/debris and maintains homeostasis before the onset of necrosis (secondary necrosis), which promotes inflammation or injury. During efferocytosis, mitochondrial fission and the oxidative stress process are linked through reactive oxygen species production and oxidative stress control. Autophagy plays an important role in inhibiting inflammation and apoptosis, and in promoting efferocytosis by activated inflammatory cells, particularly neutrophils and macrophages. Autophagy in neutrophils is activated by phagocytosis of pathogens or activation of pattern recognition receptors. Autophagy is essential for major neutrophil functions, including degranulation, reactive oxygen species production, oxidative stress and release of neutrophil extracellular cytokines. Failed efferocytosis is a key mechanism driving the development and progression of chronic inflammatory diseases, including atherosclerosis, cardiometabolic pathology, neurodegenerative disease and cancer. Impairment of efferocytosis in apoptotic macrophages is a determinant of atherosclerosis severity and the vulnerability of plaques to rupture. Recent results suggest that inhibition of efferocytosis in the protection of the myocardium results in reduced infiltration of reparatory macrophages into the tissue, in association with oxidative stress reduction. Activated macrophages play a central role in the development and resolution of inflammation. The resolution of inflammation through efferocytosis is an endogenous process that protects host tissues from prolonged or excessive inflammation. Accordingly, therapeutic strategies that ameliorate efferocytosis control would be predicted to dampen inflammation and improve resolution. Thus, therapies targeting efferocytosis will provide a new means of treating and preventing cardiovascular and metabolic diseases involving the chronic inflammatory state.

3.
Brain Sci ; 13(8)2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37626524

ABSTRACT

Antioxidants in cancer therapy have been a hot topic in the medical field for 20 years. Antioxidants are able to reduce the risk of cancer formation by neutralizing free radicals. Protons (H+) and molecular hydrogen (H2) interact in the cell and are essential in a wide variety of processes. The antioxidant, anti-inflammatory, and antiapoptotic effects of H2 have been studied in numerous experimental and clinical studies. Experimental data indicate that H2 is an antitumor agent in the treatment of glioblastoma (GBM). In vivo H2 inhalation could suppress the growth of GBM tumors, thereby extending the survival of mice with GBM. The sphere-forming ability of glioma cells was suppressed by hydrogen treatment. In addition, H2 treatment also suppressed the migration, invasion, and colony-forming ability of glioma cells. Proton therapy and proton beam radiotherapy offer some advantages over other modern conformal photon-based therapies when used in the treatment of central nervous system malignancies.

4.
Stroke Vasc Neurol ; 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37429637

ABSTRACT

BACKGROUND: Atrial cardiomyopathy (AC) is an emerging concept explaining the pathophysiology of cardioembolic strokes in absence of atrial fibrillation (AF). A definition based on the presence of electrical abnormality (P-wave terminal force in lead V1 (PTFV1) >5000 µV×ms), N-Terminal pro-B-type natriuretic peptide (NT pro BNP) >250 pg/mL and/or indexed left atrial diameter (LADI) >3 cm/m² is currently tested in the ARCADIA (AtRial Cardiopathy and Antithrombotic Drugs In prevention After cryptogenic stroke) trial. We set out to estimate the prevalence of AC as defined in the ARCADIA trial, its determinants and its association with AF detected after stroke (AFDAS). METHODS: Stepwise screening for silent Atrial Fibrillation After Stroke (SAFAS) study prospectively included 240 ischaemic stroke patients. AC markers were complete for 192 of them and 9 were not included in this analysis because AF had been diagnosed on admission. RESULTS: A total of 183 patients were analysed, of whom 57% (104 patients) met the AC criteria (79 NT-proBNP, 47 PTFV1, 4 LADI). In the multivariate logistic regression, C reactive protein >3 mg/L (OR (95% CI) 2.60 (1.30 to 5.21), p=0.007) and age (OR (95% CI) 1.07 (1.04 to 1.10), p<0.001) were found to be independently associated with AC. After 6 months of follow-up, AFDAS was detected in 33% of AC patients and in 14% of the remaining ones (p=0.003). However, AC was not independently associated with AFDAS, contrary to left atrial volume index (>34 mL/m2, OR 2.35 (CI 1.09 to 5.06) p=0029). CONCLUSION: AC as defined in ARCADIA is mostly based on NT pro BNP elevation (76% of patients) and is associated with age and inflammation. Moreover, AC was not independently associated with AFDAS at follow-up. The ARCADIA trial, which compares aspirin to apixaban in patients with embolic strokes of undetermined source with AC markers and must, therefore be analysed in the light of these limitations. TRIAL REGISTRATION NUMBER: NCT03570060.

5.
Brain Sci ; 13(2)2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36831853

ABSTRACT

July 1936: Hans Selye describes in 74 lines in the prestigious journal Nature a new concept: Stress [...].

6.
Arch Cardiovasc Dis ; 116(1): 41-46, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36572608

ABSTRACT

Organs and tissues are subjected to numerous alterations during aging, as a result of complex biochemical changes. Aging is certainly associated with the accumulation of "antiaging" and "proaging" factors in the systemic circulation. The effects of young blood on rejuvenation of regenerative capacity suggest the existence of multiple "proyouthful" factors, such as growth differentiation factor 11 (GDF11), in the young blood of animals. GDF11 is a member of the transforming growth factor beta (TGFß) superfamily of cytokines, and appears to be a critical rejuvenation factor in aging organs. In the context of aging, GDF11 promotes vascular and neural plasticity of the central nervous system. Parabiosis, the surgical linking of circulations between old and young mice, was employed to identify GDF11 as an antihypertrophic factor that appears to rejuvenate the aging murine heart. Current theories suggest that GDF11 in young blood has beneficial effects on cognitive and cardiovascular functions and wound healing. The cellular mechanisms of GDF11 in cardiovascular, neurological, skin and skeletal muscle diseases are not clearly defined, but evidence indicates that it may function as a proneurogenic and proangiogenic drug. GDF11 binds and activates specific receptor complexes, which transmit signals by two procedures: the TGFß-Smad pathway and the bone morphogenic protein (BMP)-Smad pathway. GDF11 is perhaps only the first in a series of circulating molecules that will be found to influence the aging of different tissues, and it may be a potential candidate for therapeutic intervention against angiogenesis-related disorders.


Subject(s)
Growth Differentiation Factors , Heart , Mice , Humans , Animals , Growth Differentiation Factors/metabolism , Growth Differentiation Factors/pharmacology , Aging/metabolism , Transforming Growth Factor beta , Bone Morphogenetic Proteins
7.
Ann Cardiol Angeiol (Paris) ; 72(1): 41-43, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36163282

ABSTRACT

In the recently published manuscript entitled "GDF15 a rising modulator of immunity and a strategy in Coronavirus disease 2019 (COVID-19) in relationship with iron metabolism" and we examined the potential properties of Growth and differentiation factor 15 (GDF15) as an emerging modulator of immunity in COVID-19. We commented new aspects of the biology of GDF15 and investigated the potential value of GDF15 as a biomarker. Is GDF15 a biomarker of the inflammatory process and oxidative stress state? Recently, it was reported that 1500 clinical trials related to COVID-19 have been registered, but none have yet found an optimal strategy. In these conditions, more clinical studies are needed before any of these agents can be considered antiviral agents.


Subject(s)
COVID-19 , Cardiovascular Diseases , Humans , Biomarkers , Growth Differentiation Factor 15
8.
Front Cardiovasc Med ; 9: 949213, 2022.
Article in English | MEDLINE | ID: mdl-35911547

ABSTRACT

Background: Intensive screening for atrial fibrillation (AF) has led to a better recognition of this cause in stroke patients. However, it is currently debated whether AF Detected After Stroke (AFDAS) has the same pathophysiology and embolic risk as prior-to-stroke AF. We thus aimed to systematically approach AFDAS using a multimodal approach combining clinical, imaging, biological and electrocardiographic markers. Methods: Patients without previously known AF admitted to the Dijon University Hospital (France) stroke unit for acute ischemic stroke were prospectively enrolled. The primary endpoint was the presence of AFDAS at 6 months, diagnosed through admission ECG, continuous electrocardiographic monitoring, long-term external Holter during the hospital stay, or implantable cardiac monitor if clinically indicated after discharge. Results: Of the 240 included patients, 77 (32%) developed AFDAS. Compared with sinus rhythm patients, those developing AFDAS were older, more often women and less often active smokers. AFDAS patients had higher blood levels of NT-proBNP, osteoprotegerin, galectin-3, GDF-15 and ST2, as well as increased left atrial indexed volume and lower left ventricular ejection fraction. After multivariable analysis, galectin-3 ≧ 9 ng/ml [OR 3.10; 95% CI (1.03-9.254), p = 0.042], NT-proBNP ≧ 290 pg/ml [OR 3.950; 95% CI (1.754-8.892, p = 0.001], OPG ≥ 887 pg/ml [OR 2.338; 95% CI (1.015-5.620), p = 0.046) and LAVI ≥ 33.5 ml/m2 [OR 2.982; 95% CI (1.342-6.625), p = 0.007] were independently associated with AFDAS. Conclusion: A multimodal approach combining imaging, electrocardiography and original biological markers resulted in good predictive models for AFDAS. These results also suggest that AFDAS is probably related to an underlying atrial cardiopathy. Clinical Trial Registration: [www.ClinicalTrials.gov], identifier [NCT03570060].

9.
Cells ; 11(7)2022 04 05.
Article in English | MEDLINE | ID: mdl-35406797

ABSTRACT

Calprotectin (CLP) belonging to the S-100 protein family is a heterodimeric complex (S100A8/S100A9) formed by two binding proteins. Upon cell activation, CLP stored in neutrophils is released extracellularly in response to inflammatory stimuli and acts as damage-associated molecular patterns (DAMPs). S100A8 and S100A9 possess both anti-inflammatory and anti-bacterial properties. The complex is a ligand of the toll-like receptor 4 (TLR4) and receptor for advanced glycation end (RAGE). At sites of infection and inflammation, CLP is a target for oxidation due to its co-localization with neutrophil-derived oxidants. In the heart, oxidative stress (OS) responses and S100 proteins are closely related and intimately linked through pathophysiological processes. Our review summarizes the roles of S100A8, S100A9 and CLP in the inflammation in relationship with vascular OS, and we examine the importance of CLP for the mechanisms driving in the protection of myocardium. Recent evidence interpreting CLP as a critical modulator during the inflammatory response has identified this alarmin as an interesting drug target.


Subject(s)
Calgranulin A , Leukocyte L1 Antigen Complex , Alarmins/metabolism , Calgranulin A/metabolism , Calgranulin B/metabolism , Humans , Inflammation/metabolism , Leukocyte L1 Antigen Complex/metabolism , Oxidative Stress , S100 Proteins/metabolism
10.
Arch Cardiovasc Dis ; 115(1): 48-56, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34972639

ABSTRACT

Great attention is being paid to the evaluation of new markers in blood circulation for the estimation of tissue metabolism disturbance. This endogenous disturbance may contribute to the onset and progression of cardiometabolic disease. In addition to their role in energy production and metabolism, mitochondria play a main function in cellular mechanisms, including apoptosis, oxidative stress and calcium homeostasis. Mitochondria produce mitochondrial-derived peptides that mediate the transcriptional stress response by translocating into the nucleus and interacting with deoxyribonucleic acid. This class of peptides includes humanin, mitochondrial open reading frame of the 12S ribosomal ribonucleic acid type c (MOTS-c) and small humanin-like peptides. Mitochondrial-derived peptides are regulators of metabolism, exerting cytoprotective effects through antioxidative stress, anti-inflammatory responses and antiapoptosis; they are emerging biomarkers reflecting mitochondrial function, and the circulating concentration of these proteins can be used to diagnose cardiometabolic dysfunction. The aims of this review are: (1) to describe the emerging role for mitochondrial-derived peptides as biomarkers; and (2) to discuss the therapeutic application of these peptides.


Subject(s)
Cardiovascular Diseases , Mitochondria , Biomarkers/metabolism , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/metabolism , Humans , Mitochondria/metabolism , Oxidative Stress , Peptides/metabolism
11.
Int J Mol Sci ; 24(1)2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36613888

ABSTRACT

Regulated cell death (RCD) has a significant impact on development, tissue homeostasis, and the occurrence of various diseases. Among different forms of RCD, ferroptosis is considered as a type of reactive oxygen species (ROS)-dependent regulated necrosis. ROS can react with polyunsaturated fatty acids (PUFAs) of the lipid (L) membrane via the formation of a lipid radical L• and induce lipid peroxidation to form L-ROS. Ferroptosis is triggered by an imbalance between lipid hydroperoxide (LOOH) detoxification and iron-dependent L-ROS accumulation. Intracellular iron accumulation and lipid peroxidation are two central biochemical events leading to ferroptosis. Organelles, including mitochondria and lysosomes are involved in the regulation of iron metabolism and redox imbalance in ferroptosis. In this review, we will provide an overview of lipid peroxidation, as well as key components involved in the ferroptotic cascade. The main mechanism that reduces ROS is the redox ability of glutathione (GSH). GSH, a tripeptide that includes glutamic acid, cysteine, and glycine, acts as an antioxidant and is the substrate of glutathione peroxidase 4 (GPX4), which is then converted into oxidized glutathione (GSSG). Increasing the expression of GSH can inhibit ferroptosis. We highlight the role of the xc- GSH-GPX4 pathway as the main pathway to regulate ferroptosis. The system xc-, composed of subunit solute carrier family members (SLC7A11 and SLC3A2), mediates the exchange of cystine and glutamate across the plasma membrane to synthesize GSH. Accumulating evidence indicates that ferroptosis requires the autophagy machinery for its execution. Ferritinophagy is used to describe the removal of the major iron storage protein ferritin by the autophagy machinery. Nuclear receptor coactivator 4 (NCOA4) is a cytosolic autophagy receptor used to bind ferritin for subsequent degradation by ferritinophagy. During ferritinophagy, stored iron released becomes available for biosynthetic pathways. The dysfunctional ferroptotic response is implicated in a variety of pathological conditions. Ferroptosis inducers or inhibitors targeting redox- or iron metabolism-related proteins and signal transduction have been developed. The simultaneous detection of intracellular and extracellular markers may help diagnose and treat diseases related to ferroptotic damage.


Subject(s)
Ferroptosis , Lipid Peroxidation/physiology , Reactive Oxygen Species/metabolism , Iron/metabolism , Ferritins/metabolism , Homeostasis , Lipid Peroxides/metabolism
12.
Int J Mol Sci ; 22(16)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34445593

ABSTRACT

Growth and differentiation factor 15 (GDF15) belongs to the transforming growth factor-ß (TGF-ß) superfamily of proteins. Glial-derived neurotrophic factor (GDNF) family receptor α-like (GFRAL) is an endogenous receptor for GDF15 detected selectively in the brain. GDF15 is not normally expressed in the tissue but is prominently induced by "injury". Serum levels of GDF15 are also increased by aging and in response to cellular stress and mitochondrial dysfunction. It acts as an inflammatory marker and plays a role in the pathogenesis of cardiovascular diseases, metabolic disorders, and neurodegenerative processes. Identified as a new heart-derived endocrine hormone that regulates body growth, GDF15 has a local cardioprotective role, presumably due to its autocrine/paracrine properties: antioxidative, anti-inflammatory, antiapoptotic. GDF15 expression is highly induced in cardiomyocytes after ischemia/reperfusion and in the heart within hours after myocardial infarction (MI). Recent studies show associations between GDF15, inflammation, and cardiac fibrosis during heart failure and MI. However, the reason for this increase in GDF15 production has not been clearly identified. Experimental and clinical studies support the potential use of GDF15 as a novel therapeutic target (1) by modulating metabolic activity and (2) promoting an adaptive angiogenesis and cardiac regenerative process during cardiovascular diseases. In this review, we comment on new aspects of the biology of GDF15 as a cardiac hormone and show that GDF15 may be a predictive biomarker of adverse cardiac events.


Subject(s)
Biomarkers/metabolism , Cardiovascular Diseases/diagnosis , Growth Differentiation Factor 15/metabolism , Animals , Cardiovascular Diseases/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...