Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Res Ther ; 10(1): 230, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31615539

ABSTRACT

BACKGROUND: Systemic inflammatory response syndrome (SIRS) is common in severe fulminant hepatic failure (FHF) and has a high mortality rate (20-50%) due to irreversible cerebral edema or sepsis. Stem cell-based treatment has emerged as a promising alternative therapeutic strategy to prolong the survival of patients suffering from FHF via the inhibition of SIRS due to their immunomodulatory effects. METHODS: 3D spheroids of adipose-derived mesenchymal stem cells (3D-ADSC) were prepared by the hanging drop method. The efficacy of the 3D-ADSC to rescue FHF was evaluated in a D-galactosamine/lipopolysaccharide (GalN/LPS)-induced mouse model of FHF via intraportal transplantation of the spheroids. RESULTS: Intraportally delivered 3D-ADSC better engrafted and localized into the damaged livers compared to 2D-cultured adipose-derived mesenchymal stem cells (2D-ADSC). Transplantation of 3D-ADSC rescued 50% of mice from FHF-induced lethality, whereas only 20% of mice survived when 2D-ADSC were transplanted. The improved transplantation outcomes correlated with the enhanced immunomodulatory effect of 3D-ADSC in the liver microenvironment. CONCLUSION: The study shows that the transplantation of optimized 3D-ADSC can efficiently ameliorate GalN/LPS-induced FHF due to improved viability, resistance to exogenous ROS, and enhanced immunomodulatory effects of 3D-ADSC.


Subject(s)
Liver Failure, Acute/therapy , Liver/pathology , Mesenchymal Stem Cell Transplantation , Animals , Cell Culture Techniques , Cell Survival , Dinoprostone/metabolism , Disease Models, Animal , Galactosamine/toxicity , Heme Oxygenase-1/metabolism , Interleukin-10/blood , Lipopolysaccharides/toxicity , Liver/metabolism , Liver Failure, Acute/pathology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Mice, Nude , Oxidative Stress , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
2.
Small ; 15(23): e1901269, 2019 06.
Article in English | MEDLINE | ID: mdl-31018047

ABSTRACT

Mesenchymal stem cells (MSCs) are considered as a promising alternative for the treatment of various inflammatory disorders. However, poor viability and engraftment of MSCs after transplantation are major hurdles in mesenchymal stem cell therapy. Extracellular matrix (ECM)-coated scaffolds provide better cell attachment and mechanical support for MSCs after transplantation. A single-step method for ECM functionalization on poly(lactic-co-glycolic acid) (PLGA) microspheres using a novel compound, dopamine-conjugated poly(ethylene-alt-maleic acid), as a stabilizer during the preparation of microspheres is reported. The dopamine molecules on the surface of microspheres provide active sites for the conjugation of ECM in an aqueous solution. The results reveal that the viability of MSCs improves when they are coated over the ECM-functionalized PLGA microspheres (eMs). In addition, the incorporation of a broad-spectrum caspase inhibitor (IDN6556) into the eMs synergistically increases the viability of MSCs under in vitro conditions. Intraperitoneal injection of the MSC-microsphere hybrid alleviates experimental colitis in a murine model via inhibiting Th1 and Th17 differentiation of CD4+ T cells in colon-draining mesenteric lymph nodes. Therefore, drug-loaded ECM-coated surfaces may be considered as attractive tools for improving viability, proliferation, and functionality of MSCs following transplantation.


Subject(s)
Colitis/therapy , Extracellular Matrix/chemistry , Mesenchymal Stem Cell Transplantation/instrumentation , Mesenchymal Stem Cells/cytology , Microspheres , Pentanoic Acids/administration & dosage , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Animals , Caspase Inhibitors/administration & dosage , Cells, Cultured , Colitis/chemically induced , Colitis/pathology , Dextran Sulfate , Disease Models, Animal , Drug Carriers/administration & dosage , Drug Evaluation, Preclinical , Humans , Injections, Intraperitoneal , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/drug effects , Mice , Mice, Inbred C57BL , Polylactic Acid-Polyglycolic Acid Copolymer/administration & dosage , Polylactic Acid-Polyglycolic Acid Copolymer/chemical synthesis , Regenerative Medicine/instrumentation , Regenerative Medicine/methods , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...