Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Cell ; 187(13): 3249-3261.e14, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38781968

ABSTRACT

Thermostable clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas9) enzymes could improve genome-editing efficiency and delivery due to extended protein lifetimes. However, initial experimentation demonstrated Geobacillus stearothermophilus Cas9 (GeoCas9) to be virtually inactive when used in cultured human cells. Laboratory-evolved variants of GeoCas9 overcome this natural limitation by acquiring mutations in the wedge (WED) domain that produce >100-fold-higher genome-editing levels. Cryoelectron microscopy (cryo-EM) structures of the wild-type and improved GeoCas9 (iGeoCas9) enzymes reveal extended contacts between the WED domain of iGeoCas9 and DNA substrates. Biochemical analysis shows that iGeoCas9 accelerates DNA unwinding to capture substrates under the magnesium-restricted conditions typical of mammalian but not bacterial cells. These findings enabled rational engineering of other Cas9 orthologs to enhance genome-editing levels, pointing to a general strategy for editing enzyme improvement. Together, these results uncover a new role for the Cas9 WED domain in DNA unwinding and demonstrate how accelerated target unwinding dramatically improves Cas9-induced genome-editing activity.


Subject(s)
CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Cryoelectron Microscopy , DNA , Gene Editing , Humans , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems/genetics , DNA/metabolism , DNA/genetics , Gene Editing/methods , Geobacillus stearothermophilus/genetics , Geobacillus stearothermophilus/metabolism , HEK293 Cells , Protein Domains , Genome, Human , Models, Molecular , Protein Structure, Tertiary , Nucleic Acid Conformation , Biocatalysis , Magnesium/chemistry , Magnesium/metabolism
2.
Nat Commun ; 15(1): 4578, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811586

ABSTRACT

Modulation of the cervix by steroid hormones and commensal microbiome play a central role in the health of the female reproductive tract. Here we describe organ-on-a-chip (Organ Chip) models that recreate the human cervical epithelial-stromal interface with a functional epithelial barrier and production of mucus with biochemical and hormone-responsive properties similar to living cervix. When Cervix Chips are populated with optimal healthy versus dysbiotic microbial communities (dominated by Lactobacillus crispatus and Gardnerella vaginalis, respectively), significant differences in tissue innate immune responses, barrier function, cell viability, proteome, and mucus composition are observed that are similar to those seen in vivo. Thus, human Cervix Organ Chips represent physiologically relevant in vitro models to study cervix physiology and host-microbiome interactions, and hence may be used as a preclinical testbed for development of therapeutic interventions to enhance women's health.


Subject(s)
Cervix Uteri , Host Microbial Interactions , Immunity, Innate , Microbiota , Humans , Female , Cervix Uteri/microbiology , Cervix Uteri/immunology , Microbiota/immunology , Host Microbial Interactions/immunology , Gardnerella vaginalis/immunology , Lactobacillus crispatus/immunology , Mucus/immunology , Mucus/microbiology , Mucus/metabolism , Lab-On-A-Chip Devices
3.
bioRxiv ; 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38617247

ABSTRACT

Structured RNA lies at the heart of many central biological processes, from gene expression to catalysis. While advances in deep learning enable the prediction of accurate protein structural models, RNA structure prediction is not possible at present due to a lack of abundant high-quality reference data. Furthermore, available sequence data are generally not associated with organismal phenotypes that could inform RNA function. We created GARNET (Gtdb Acquired RNa with Environmental Temperatures), a new database for RNA structural and functional analysis anchored to the Genome Taxonomy Database (GTDB). GARNET links RNA sequences derived from GTDB genomes to experimental and predicted optimal growth temperatures of GTDB reference organisms. This enables construction of deep and diverse RNA sequence alignments to be used for machine learning. Using GARNET, we define the minimal requirements for a sequence- and structure-aware RNA generative model. We also develop a GPT-like language model for RNA in which triplet tokenization provides optimal encoding. Leveraging hyperthermophilic RNAs in GARNET and these RNA generative models, we identified mutations in ribosomal RNA that confer increased thermostability to the Escherichia coli ribosome. The GTDB-derived data and deep learning models presented here provide a foundation for understanding the connections between RNA sequence, structure, and function.

4.
Nucleic Acids Res ; 52(D1): D590-D596, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37889041

ABSTRACT

CRISPR-Cas enzymes enable RNA-guided bacterial immunity and are widely used for biotechnological applications including genome editing. In particular, the Class 2 CRISPR-associated enzymes (Cas9, Cas12 and Cas13 families), have been deployed for numerous research, clinical and agricultural applications. However, the immense genetic and biochemical diversity of these proteins in the public domain poses a barrier for researchers seeking to leverage their activities. We present CasPEDIA (http://caspedia.org), the Cas Protein Effector Database of Information and Assessment, a curated encyclopedia that integrates enzymatic classification for hundreds of different Cas enzymes across 27 phylogenetic groups spanning the Cas9, Cas12 and Cas13 families, as well as evolutionarily related IscB and TnpB proteins. All enzymes in CasPEDIA were annotated with a standard workflow based on their primary nuclease activity, target requirements and guide-RNA design constraints. Our functional classification scheme, CasID, is described alongside current phylogenetic classification, allowing users to search related orthologs by enzymatic function and sequence similarity. CasPEDIA is a comprehensive data portal that summarizes and contextualizes enzymatic properties of widely used Cas enzymes, equipping users with valuable resources to foster biotechnological development. CasPEDIA complements phylogenetic Cas nomenclature and enables researchers to leverage the multi-faceted nucleic-acid targeting rules of diverse Class 2 Cas enzymes.


Subject(s)
CRISPR-Associated Proteins , CRISPR-Cas Systems , Databases, Genetic , Endodeoxyribonucleases , CRISPR-Cas Systems/genetics , Phylogeny , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/classification , CRISPR-Associated Proteins/genetics , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/classification , Endodeoxyribonucleases/genetics , Encyclopedias as Topic
5.
Transplant Cell Ther ; 30(2): 217-227, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37931800

ABSTRACT

Blinatumomab, a bispecific T cell engager that binds CD19 in leukemic cells and CD3 in cytotoxic T cells and leads to leukemic blast lysis, is often used in pediatric patients with relapsed/refractory (R/R) B cell acute lymphoblastic leukemia (B-ALL) prior to allogeneic hematopoietic cell transplantation (allo-HCT). Concerns about the potential risk of blinatumomab-related immune-mediated toxicities after allo-HCT have not been adequately addressed. These include graft-versus-host disease (GVHD), delayed engraftment, and graft failure or rejection. Pediatric-specific data reporting post-HCT outcomes of patients treated with blinatumomab are scarce and limited to small cohorts. We sought to investigate the clinical outcomes of pediatric patients with R/R B-ALL who received blinatumomab therapy pre-HCT, focusing on overall survival (OS), leukemia-free survival (LFS), cumulative incidence of relapse (CIR), and nonrelapse mortality (NRM), as well as the incidence of immune-mediated post-HCT complications including GVHD, delayed neutrophil or platelet engraftment, graft failure, and graft rejection. We also investigated blinatumomab's effects on B cell reconstitution based on achievement of i.v. immunoglobulin (IVIG) independence post-HCT. This single-center, retrospective study included patients with B-ALL receiving blinatumomab therapy before undergoing allo-HCT, with transplantation performed between 2016 and 2021 at our institution. Patients receiving blinatumomab for relapse after allo-HCT were excluded. Patients receiving chemotherapy alone before allo-HCT during the same period composed the control group. Seventy-two patients were included, 31 of whom received blinatumomab before allo-HCT. Survival estimates were obtained using the Kaplan-Meier method, and the log-rank test was used to analyze differences between groups. Categorical variables were compared between groups using the chi-square test or Fisher exact test, and continuous variables were compared using the Wilcoxon rank-sum test. Cumulative incidences were estimated using the competing risks method, and Gray's test was used to analyze differences between groups. A Cox proportional hazards regression model was used for univariate and multivariable analyses for OS. Landmark analysis was performed at the set time points of 30 days and 100 days post-allo-HCT. Most patients in the study cohort had high-risk relapsed B-ALL. Blinatumomab therapy induced minimal residual disease (MRD)-negative remissions in all patients, whereas 5 patients (12.2%) receiving chemotherapy alone had persistent MRD pre-allo-HCT. Time from the start of therapy to the date of allo-HCT was shorter for patients who received blinatumomab compared with those who received chemotherapy (P < .0001). Blinatumomab therapy was associated with greater LFS compared to chemotherapy alone (P = .049), but when limited to 1 year, LFS was not significantly different from control (P = .066). There appeared to be higher OS, lower CIR, and lower NRM in patients receiving blinatumomab compared to the control group; however, the differences were not significant. None of the variables assessed in multivariable analysis was associated with differences in OS. When compared to the controls, blinatumomab therapy did not result in a higher incidence of acute or chronic GVHD, delayed neutrophil or platelet engraftment, or graft failure or rejection. The time to IVIG infusion independence post-allo-HCT was similar in the 2 groups. This study supports the use of blinatumomab salvage therapy for R/R B-ALL before allo-HCT given its efficacy in inducing MRD-negative remissions and optimizing LFS, as well as its lack of association with an increased incidence of post-allo-HCT adverse immune-mediated toxicities. Larger, prospective studies are needed to confirm these findings and to investigate blinatumomab's effects in long-term post-allo-HCT events.


Subject(s)
Antibodies, Bispecific , Burkitt Lymphoma , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Child , Retrospective Studies , Immunoglobulins, Intravenous , Hematopoietic Stem Cell Transplantation/adverse effects , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/etiology , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Burkitt Lymphoma/etiology , Recurrence
6.
Pediatr Hematol Oncol ; 41(4): 260-272, 2024 May.
Article in English | MEDLINE | ID: mdl-38131101

ABSTRACT

While matched related donor (MRD) allogeneic hematopoietic stem cell transplantation (HSCT) is a curative option for transfusion-dependent beta-thalassemia (TDT), the use of alternative sources has increased, resulting in the exploration of novel transplant-conditioning regimens to reduce the contribution of graft-versus-host disease (GVHD) and graft failure (GF) to transplant-related morbidity and mortality. Alemtuzumab is a CD52 monoclonal antibody that has been successfully incorporated into myeloablative conditioning regimens for other hematologic conditions, yet there have been limited studies regarding the use of alemtuzumab in HSCT for TDT. The purpose of this study was to evaluate engraftment, incidence of GVHD, and transplant related morbidity and mortality in patients with TDT who received alemtuzumab in addition to standard busulfan-based conditioning. The primary endpoint was severe GVHD-free, event-free survival (GEFS). Our cohort included 24 patients with a median age of 6.8 years (range 1.5-14.9). Eleven patients received a 10/10 MRD HSCT, eleven 10/10 unrelated donor (UD), and two mismatched UD. All patients achieved primary engraftment. For all patients, 5-year GEFS was 77.4% and 5-year overall survival (OS) was 91%. The 5-year cumulative incidence of GF (attributed to poor graft function) without loss of donor chimerism was 13.8% (95% CI: 4.5, 35.3). We report low rates of significant acute GVHD grade II-IV (12.5%) and chronic GVHD (4.4%). Younger age and MRD were associated with significantly improved GEFS, OS and EFS. Our results show that the use of alemtuzumab promotes stable engraftment, may reduce rates of severe GVHD, and results in acceptable GEFS, OS, and EFS.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , beta-Thalassemia , Humans , Infant , Child, Preschool , Child , Adolescent , Alemtuzumab/therapeutic use , beta-Thalassemia/therapy , beta-Thalassemia/complications , Transplantation, Homologous , Hematopoietic Stem Cell Transplantation/methods , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Transplantation Conditioning/methods , Retrospective Studies
8.
RSC Chem Biol ; 4(1): 74-83, 2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36685257

ABSTRACT

Adenosine deaminases that act on RNA (ADARs) can be directed to predetermined sites in transcriptomes by forming duplex structures with exogenously delivered guide RNAs (gRNAs). They can then catalyze the hydrolytic deamination of adenosine to inosine in double stranded RNA, which is read as guanosine during translation. High resolution structures of ADAR2-RNA complexes revealed a unique conformation for the nucleotide in the guide strand base paired to the editing site's 5' nearest neighbor (-1 position). Here we describe the effect of 16 different nucleoside analogs at this position in a gRNA that targets a 5'-UA̲-3' site. We found that several analogs increase editing efficiency for both catalytically active human ADARs. In particular, 2'-deoxynebularine (dN) increased the ADAR1 and ADAR2 in vitro deamination rates when at the -1 position of gRNAs targeting the human MECP2 W104X site, the mouse IDUA W392X site, and a site in the 3'-UTR of human ACTB. Furthermore, a locked nucleic acid (LNA) modification at the -1 position was found to eliminate editing. When placed -1 to a bystander editing site in the MECP2 W104X sequence, bystander editing was eliminated while maintaining on-target editing. In vitro trends for four -1 nucleoside analogs were validated by directed editing of the MECP2 W104X site expressed on a reporter transcript in human cells. This work demonstrates the importance of the -1 position of the gRNA to ADAR editing and discloses nucleoside analogs for this site that modulate ADAR editing efficiency.

9.
Blood Adv ; 7(9): 1823-1830, 2023 05 09.
Article in English | MEDLINE | ID: mdl-36453638

ABSTRACT

There is no consensus on the best donor for children with nonmalignant disorders and immune deficiencies in the absence of a matched related donor (MRD). We evaluated the 2-year overall survival (OS) after umbilical cord blood transplantation (UCBT) in patients with nonmalignant disorders from 2009 to 2020 enrolled in a prospective clinical trial using either 5/6 or 6/6 UCB as the cell source. Patients receive a fully ablative busulfan, cyclophosphamide, and fludarabine without serotherapy. Fifty-five children were enrolled, median age 5 months (range, 1-111 months); primary immune deficiency (45), metabolic (5), hemophagocytic lymphohistiocytosis (1), and hematologic disorders (4). Twenty-six patients had persistent infections before transplant. Nineteen of them (34%) were 6/6 matched, and 36 (66%) were 5/6 human leukocyte antigen-matched. The OS at 2 years was 91% (95% cumulative incidence, 79-96), with a median follow-up of 4.3 years. The median time to neutrophil and platelet recovery were 17 days (range, 5-39 days) and 37 days (range, 20-92 days), respectively. All but one evaluable patient achieved full donor chimerism. The cumulative incidence of acute GVHD grades 2-4 on day 100 was 16% (n = 9). All patients with viral infections at the time of transplant cleared the infection at a median time of 54 days (range, 44-91 days). All evaluable patients underwent correction of their immune or metabolic defects. We conclude that in the absence of MRD, UCBT following myeloablative conditioning without serotherapy is an excellent curative option in young children with nonmalignant disorders. This trial has been registered at www.clinicaltrials.gov as NCT00950846.


Subject(s)
Cord Blood Stem Cell Transplantation , Hematopoietic Stem Cell Transplantation , Child , Child, Preschool , Humans , Infant , Busulfan , Cyclophosphamide/therapeutic use , Prospective Studies
10.
Haematologica ; 108(4): 1039-1052, 2023 04 01.
Article in English | MEDLINE | ID: mdl-35899386

ABSTRACT

The outcome of patients with acute myeloid leukemia remains poor, and immunotherapy has the potential to improve this. T cells expressing chimeric antigen receptors or bispecific T-cell engagers targeting CD123 are actively being explored in preclinical and/or early phase clinical studies. We have shown that T cells expressing CD123-specific bispecific T-cell engagers (CD123.ENG T cells) have anti-acute myeloid leukemia activity. However, like chimeric antigen receptor T cells, their effector function diminishes rapidly once they are repeatedly exposed to antigen-positive target cells. Here we sought to improve the effector function of CD123.ENG T cells by expressing inducible co-stimulatory molecules consisting of MyD88 and CD40 (iMC), MyD88 (iM), or CD40 (iC), which are activated by a chemical inducer of dimerization. CD123.ENG T cells expressing iMC, iM, or iC maintained their antigen specificity in the presence of a chemical inducer of dimerization, as judged by cytokine production (interferon-γ, interleukin-2) and their cytolytic activity. In repeat stimulation assays, activating iMC and iM, in contrast to iC, enabled CD123.ENG T cells to secrete cytokines, expand, and kill CD123-positive target cells repeatedly. Activating iMC in CD123.ENG T cells consistently improved antitumor activity in an acute myeloid leukemia xenograft model. This translated into a significant survival advantage in comparison to that of mice that received CD123.ENG or CD123.ENG.iC T cells. In contrast, activation of only iM in CD123.ENG T cells resulted in donor-dependent antitumor activity. Our work highlights the need for both toll-like receptor pathway activation via MyD88 and provision of co-stimulation via CD40 to consistently enhance the antitumor activity of CD123.ENG T cells.


Subject(s)
Leukemia, Myeloid, Acute , T-Lymphocytes , Animals , Humans , Mice , Cell Line, Tumor , Interleukin-3 Receptor alpha Subunit/metabolism , Leukemia, Myeloid, Acute/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , T-Lymphocytes/metabolism , CD40 Antigens/metabolism
11.
bioRxiv ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38168238

ABSTRACT

Thermostable CRISPR-Cas9 enzymes could improve genome editing efficiency and delivery due to extended protein lifetimes. However, initial experimentation demonstrated Geobacillus stearothermophilus Cas9 (GeoCas9) to be virtually inactive when used in cultured human cells. Laboratory-evolved variants of GeoCas9 overcome this natural limitation by acquiring mutations in the wedge (WED) domain that produce >100-fold higher genome editing levels. Cryo-EM structures of the wildtype and improved GeoCas9 (iGeoCas9) enzymes reveal extended contacts between the WED domain of iGeoCas9 and DNA substrates. Biochemical analysis shows that iGeoCas9 accelerates DNA unwinding to capture substrates under the magnesium-restricted conditions typical of mammalian but not bacterial cells. These findings enabled rational engineering of other Cas9 orthologs to enhance genome editing levels, pointing to a general strategy for editing enzyme improvement. Together, these results uncover a new role for the Cas9 WED domain in DNA unwinding and demonstrate how accelerated target unwinding dramatically improves Cas9-induced genome editing activity.

12.
Microbiome ; 10(1): 201, 2022 11 26.
Article in English | MEDLINE | ID: mdl-36434666

ABSTRACT

BACKGROUND: A dominance of non-iners Lactobacillus species in the vaginal microbiome is optimal and strongly associated with gynecological and obstetric health, while the presence of diverse obligate or facultative anaerobic bacteria and a paucity in Lactobacillus species, similar to communities found in bacterial vaginosis (BV), is considered non-optimal and associated with adverse health outcomes. Various therapeutic strategies are being explored to modulate the composition of the vaginal microbiome; however, there is no human model that faithfully reproduces the vaginal epithelial microenvironment for preclinical validation of potential therapeutics or testing hypotheses about vaginal epithelium-microbiome interactions. RESULTS: Here, we describe an organ-on-a-chip (organ chip) microfluidic culture model of the human vaginal mucosa (vagina chip) that is lined by hormone-sensitive, primary vaginal epithelium interfaced with underlying stromal fibroblasts, which sustains a low physiological oxygen concentration in the epithelial lumen. We show that the Vagina Chip can be used to assess colonization by optimal L. crispatus consortia as well as non-optimal Gardnerella vaginalis-containing consortia, and to measure associated host innate immune responses. Co-culture and growth of the L. crispatus consortia on-chip was accompanied by maintenance of epithelial cell viability, accumulation of D- and L-lactic acid, maintenance of a physiologically relevant low pH, and down regulation of proinflammatory cytokines. In contrast, co-culture of G. vaginalis-containing consortia in the vagina chip resulted in epithelial cell injury, a rise in pH, and upregulation of proinflammatory cytokines. CONCLUSION: This study demonstrates the potential of applying human organ chip technology to create a preclinical model of the human vaginal mucosa that can be used to better understand interactions between the vaginal microbiome and host tissues, as well as to evaluate the safety and efficacy of live biotherapeutics products. Video Abstract.


Subject(s)
Microbiota , Vaginosis, Bacterial , Female , Pregnancy , Humans , Lab-On-A-Chip Devices , Vagina , Cytokines
13.
Nucleic Acids Res ; 50(19): 10857-10868, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36243986

ABSTRACT

ADARs (adenosine deaminases acting on RNA) can be directed to sites in the transcriptome by complementary guide strands allowing for the correction of disease-causing mutations at the RNA level. However, ADARs show bias against editing adenosines with a guanosine 5' nearest neighbor (5'-GA sites), limiting the scope of this approach. Earlier studies suggested this effect arises from a clash in the RNA minor groove involving the 2-amino group of the guanosine adjacent to an editing site. Here we show that nucleosides capable of pairing with guanosine in a syn conformation enhance editing for 5'-GA sites. We describe the crystal structure of a fragment of human ADAR2 bound to RNA bearing a G:G pair adjacent to an editing site. The two guanosines form a Gsyn:Ganti pair solving the steric problem by flipping the 2-amino group of the guanosine adjacent to the editing site into the major groove. Also, duplexes with 2'-deoxyadenosine and 3-deaza-2'-deoxyadenosine displayed increased editing efficiency, suggesting the formation of a Gsyn:AH+anti pair. This was supported by X-ray crystallography of an ADAR complex with RNA bearing a G:3-deaza dA pair. This study shows how non-Watson-Crick pairing in duplex RNA can facilitate ADAR editing enabling the design of next generation guide strands for therapeutic RNA editing.


Subject(s)
Guanosine , RNA-Binding Proteins , Humans , Guanosine/chemistry , RNA-Binding Proteins/metabolism , Adenosine Deaminase/metabolism , RNA Editing , RNA/chemistry , Nucleic Acid Conformation
15.
Brain Sci ; 12(10)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36291298

ABSTRACT

Alzheimer's Disease (AD) is characterized by cognitive impairment and the presence of amyloid-ß (Aß) plaques and tau tangles. This study was conducted to assess the effects of white button mushroom (WBM) supplementation on spatial memory and plaque formation in mice with mutations in amyloid (Aß). Mice with amyloid precursor protein (hAPP) mutations and their wildtype (WT) littermates were fed a 10% white button mushroom (WBM) feed ad libitum three times per week, in addition to their normal diet. Morris water maze (MWM) was conducted at 14 and 32 weeks of age to assess spatial memory and Aß plaque pathology in the hippocampus was analyzed. Our results showed that hAPP mice on the WBM diet were faster in reaching the platform in the MWM compared to hAPP mice on the control diet at 32 weeks (p < 0.05). Significantly fewer plaque deposits were found in the hippocampi of hAPP mice on the WBM diet compared to those on the control diet at 32 weeks (p < 0.05). Overall, hAPP mice on the WBM diet had improved spatial memory at 32 weeks of age compared to those on the control diet and exhibited fewer amyloid plaques.

18.
Bone Marrow Transplant ; 57(4): 579-585, 2022 04.
Article in English | MEDLINE | ID: mdl-35105965

ABSTRACT

While high-dose chemotherapy followed by autologous stem cell transplantation (ASCT) leads to improved disease-free survival (DFS) for children and adults with relapsed/refractory Hodgkin lymphoma (HL), relapse remains the most frequent cause of mortality post-transplant. Rituximab has been successfully incorporated into regimens for other B-cell lymphomas, yet there have been limited studies of rituximab in HL patients. We hypothesized that adding rituximab to BEAM (carmustine, etoposide, cytarabine, melphalan) conditioning would reduce relapse risk in HL patients post-transplant. Here, we retrospectively review the outcomes of patients with relapsed/refractory HL who received rituximab in addition to BEAM. The primary outcome was DFS. Our cohort included 96 patients with a median age of 28 years (range, 6-76). Majority of patients (57%) were diagnosed with advanced (Stage III-IV) disease, and 62% were PET negative pre-transplant. DFS was 91.5% at 1 year [95% CI 86-98%], and 78% at 3 years [95% CI 68-88%]. NRM was 0% and 3.5% at 1-year [95% CI 0-3%] and 3-years [95% CI 0-8.5%], respectively. 25% of patients developed delayed neutropenia, with 7% requiring infection-related hospitalizations, and one death. We have demonstrated excellent outcomes for patients receiving rituximab with BEAM conditioning for relapsed/refractory HL. Future comparative studies are needed to better determine whether rituximab augments outcomes post-transplant.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hodgkin Disease , Adolescent , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols , Carmustine/therapeutic use , Child , Cytarabine , Hodgkin Disease/drug therapy , Hodgkin Disease/pathology , Humans , Melphalan , Middle Aged , Neoplasm Recurrence, Local/drug therapy , Retrospective Studies , Rituximab/therapeutic use , Transplantation Conditioning , Transplantation, Autologous , Young Adult
19.
Bone Marrow Transplant ; 56(11): 2797-2803, 2021 11.
Article in English | MEDLINE | ID: mdl-34274957

ABSTRACT

Serotherapeutic agents facilitate engraftment and prevent graft-versus-host disease (GVHD) following hematopoietic stem cell transplant. Anti-thymocyte globulin is generally added to conditioning chemotherapy for matched related donor transplant (MRD-HCT) for sickle cell disease (SCD). Alemtuzumab, however, is appealing due to its broad lymphocyte killing that may achieve very low rejection and GVHD rates. To assess the impact of alemtuzumab in MRD-HCT for SCD, we retrospectively reviewed transplant-related outcomes and markers of immunity in 38 consecutive patients at Texas Children's Hospital having received myeloablative conditioning with alemtuzumab. Median follow-up was 4.8 years (range: 0.2-17). All patients engrafted. Donor chimerism was mixed in 47.1% of patients at ≥2-years. Donor chimerism <50% was uncommon (n = 2). One patient with low myeloid chimerism (19%) had sickle-related hemolysis at 10-years. Incidence of acute GVHD grade II-IV (5.3%) and extensive chronic GVHD (2.8%) was very low. Five-year event-free survival (EFS) and composite chronic GVHD-EFS were excellent at 94.7% (95% CI: 80.3, 98.6) and 89.2% (95% CI: 73.7, 95.8), respectively. Infections did not contribute to mortality although cytomegalovirus reactivation occurred commonly in the first 3 months after transplant. Our data suggest potential for alemtuzumab in myeloablative transplant for children with SCD although further evaluation in older patients and with unrelated donors is warranted.


Subject(s)
Anemia, Sickle Cell , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Aged , Alemtuzumab/therapeutic use , Anemia, Sickle Cell/therapy , Graft vs Host Disease/drug therapy , Hospitals , Humans , Retrospective Studies , Texas , Transplantation Conditioning , Unrelated Donors
20.
Biomacromolecules ; 22(7): 3060-3068, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34110127

ABSTRACT

Heating bleached kraft pulps treated with poly(ethylene-alt-maleic acid) (PEMAc) can lead to high yields of carboxylated polymer grafted to fibers. However, in many cases, the cured, dry pulp cannot be effectively repulped (redispersed in water) because the wet strength is too high. Impregnation with PEMAc solutions at pH 4 followed by high temperature (120-180 °C), catalyst-free curing for short times can give fixation yields >85% while maintaining repulpability. The combination of high fixation yields with low wet strength is possible because the extent of curing required for high grafting yields is less than the curing requirement for high wet strength. Two challenges in moving this technology to practicable applications are (1) identifying the optimum laboratory pulp curing conditions and (2) translating laboratory curing conditions to industrial processes. A modeling tool was developed to meet these challenges. The model is based on the observation that for curing conditions giving high fixation yields the wet tensile indices of grafted pulp sheets showed a power-law dependence on the ßΓ product where ß is the conversion of the succinic acid moieties in PEMAc to the corresponding succinic anhydride groups in the curing step and Γ is the amount of polymer applied to the pulp. For two PEMAc molecular weights and two pulp types, the power-law slopes were 0.6; however, the pre-exponential terms depended upon the specific polymer and pulp type combination. We propose that the relationships between the wet tensile index and ßΓ, from polymer-treated, laboratory pulp handsheets, can be used to predict if proposed curing conditions for larger-scale processes will produce a repulpable product.


Subject(s)
Polyethylene , Wood , Ethylenes , Maleates
SELECTION OF CITATIONS
SEARCH DETAIL
...