Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(8)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38674127

ABSTRACT

Platelet-rich fibrin (PRF) is a widely used autologous blood concentrate in regenerative medicine. This study aimed to characterize the cellular composition and distribution of different PRF matrices generated by high (710 g) and low (44 g) relative centrifugal forces (RCFs) and to analyze their bioactivity on human primary osteoblasts (pOBs). PRF was separated into upper layer (UL) and buffy coat (BC) fractions, and their cellular contents were assessed using histological and immunohistochemical staining. The release of platelet-derived growth factor (PDGF) and transforming growth factor (TGF-ß) was quantified using an ELISA. Indirect PRF treatment on pOBs was performed to evaluate cell viability and morphology. A histological analysis revealed higher quantities of leukocytes and platelets in the low-RCF PRF. TGF-ß release was significantly higher in the low-RCF PRF compared to the high-RCF PRF. All PRF fractions promoted pOB proliferation regardless of the centrifugation protocol used. The low-RCF PRF showed higher TGF-ß levels than the high-RCF PRF. These findings contribute to understanding the cellular mechanisms of PRF and provide insights into optimizing PRF protocols for bone regeneration, advancing regenerative medicine, and improving patient outcomes.


Subject(s)
Cell Proliferation , Leukocytes , Osteoblasts , Platelet-Rich Fibrin , Humans , Osteoblasts/cytology , Osteoblasts/metabolism , Platelet-Rich Fibrin/metabolism , Leukocytes/metabolism , Leukocytes/cytology , Cells, Cultured , Transforming Growth Factor beta/metabolism , Cell Survival , Platelet-Derived Growth Factor/metabolism
2.
Bioengineering (Basel) ; 11(4)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38671725

ABSTRACT

The understanding that tumor cells might evade immunity through various mutations and the potential of an augmented immune system to eliminate abnormal cells led to the idea of utilizing platelet-rich fibrin (PRF), a blood concentrate containing the body's immune elements as an adjunctive therapy for localized tumors. This study is the first that evaluated the effect of PRF generated with different relative centrifugal forces (RCFs) on osteoblastic and fibroblastic tumor cell lines MG63 and HT1080 with regard to cell viability, cytokine and growth factor release, and the gene expression of factors related to the cell cycle and apoptosis. Our findings could demonstrate decreased cell proliferation of MG63 and HT1080 when treated indirectly with PRF compared to cell cultures without PRF. This effect was more distinct when the cells were treated with low-RCF PRF, where higher concentrations of growth factors and cytokines with reduced RCFs can be found. Similar patterns were observed when assessing the regulation of gene expression related to the cell cycle and apoptosis in both MG63 and HT1080 cells treated with PRF. Despite variations, there was a consistent trend of an up-regulation of tumor-suppressive genes and a down-regulation of anti-apoptotic genes in both cell types following treatment with high- and, particularly, low-RCF PRF formulations.

3.
Bioengineering (Basel) ; 11(3)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38534527

ABSTRACT

Platelet-rich fibrin (PRF) has assumed an important role in supporting tissue regeneration in different fields. To date, the standard protocol for liquid PRF requires at least 10 mL of peripheral blood. The present study aimed to analyze the composition, growth factor release, and effects on the cell proliferation of PRF samples produced using 3 mL vs. 10 mL of peripheral blood in vitro. Peripheral venous blood from six healthy donors was used to prepare liquid PRF using either 3 mL or 10 mL tubes. Three different centrifugation protocols were used according to the low-speed centrifugation concept. The cellular distribution was evaluated using immunohistology and automated cell count. ELISA was used to determine the release of different growth factors (EGF, TGF-ß1, and PDGF) and interleukin 8 at different time points. Primary human osteoblasts (pOBs) were cultivated for 7 days using PRF-conditioned media acquired from either 3 mL or 10 mL of peripheral blood. The results showed that 3 mL of peripheral blood is sufficient to produce a liquid PRF concentrate similar to that acquired when using 10 mL blood. The concentrations of platelets and leukocytes were comparable regardless of the initial blood volume (3 mL vs. 10 mL). Similarly, the release of growth factors (EGF, TGF-ß1, and PDGF) and interleukin 8 was often comparable in both groups over 7 days. The cultivation of pOBs using PRF-conditioned media showed a similar proliferation rate regardless of the initial blood volume. This proliferation rate was also similar to that of pOBs treated with 20% FBS-conditioned media. These findings validated the use of 3 mL of peripheral blood to generate liquid PRF matrices according to the low-speed centrifugation concept, which may open new application fields for research purposes such as in vivo experiments and clinical applications such as pediatric surgery.

4.
Platelets ; 35(1): 2316744, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38390838

ABSTRACT

Blood concentrates like platelet rich fibrin (PRF) have been established as a potential autologous source of cells and growth factors with regenerative properties in the field of dentistry and regenerative medicine. To further analyze the effect of PRF on bone tissue regeneration, this study investigated the influence of liquid PRF matrices on human healthy primary osteoblasts (pOB) and co-cultures composed of pOB and human dermal vascular endothelial cells (HDMEC) as in vitro model for bone tissue regeneration. Special attention was paid to the PRF mediated influence on osteoblastic differentiation and angiogenesis. Based on the low-speed centrifugation concept, cells were treated indirectly with PRF prepared with a low (44 g) and high relative centrifugal force (710 g) before the PRF mediated effect on osteoblast proliferation and differentiation was assessed via gene and protein expression analyses and immunofluorescence. The results revealed a PRF-mediated positive effect on osteogenic proliferation and differentiation accompanied by increased concentration of osteogenic growth factors and upregulated expression of osteogenic differentiation factors. Furthermore, it could be shown that PRF treatment resulted in an increased formation of angiogenic structures in a bone tissue mimic co-culture of endothelial cells and osteoblasts induced by the PRF mediated increased release of proangiogenic growth factors. The effects on osteogenic proliferation, differentiation and vascularization were more evident when low RCF PRF was applied to the cells. In conclusion, PRF possess proosteogenic, potentially osteoconductive as well as proangiogenic properties, making it a beneficial tool for bone tissue regeneration.


What is the context?The treatment of bone defects is still a challenge in the field of regenerative medicine. In this context, researchers and clinicians are continuously focusing on developing new therapeutic strategies like the use of autologous blood concentrates like Platelet rich fibrin (PRF) to improve regeneration by directly delivering wound healing promoting cells and growth factors to the defect side in order to restore the structure and functional integrity of damaged hard tissue in combination with adequate tissue regeneration.What is new?Focus of the present in vitro study was to further evaluate the potential of PRF paying particular attention to the PRF-mediated effect on osteogenic differentiation and angiogenesis of human primary osteoblasts as well as on a more complex tissue like co-culture consisting of osteoblasts and microvascular endothelial cells. We could demonstrate that PRF is able to support and affect a variety of processes involved in bone tissue regeneration including osteogenic proliferation, osteogenic differentiation as well as angiogenic structure formation.Treatment of PRF resulted in:- increased cell viability*- higher expression of osteogenic differentiation factors*- higher release of osteogenic growth factors*- increased formation of microvessel-like structures*(*compared to untreated control)What is the impact?PRF represents a beneficial autologous tool for regenerative purposes combining proosteogenic and proangiogenic properties. Therefore, PRF might be used for applications in versatile fields of medicine in the context of improving bone tissue regeneration.


Subject(s)
Platelet-Rich Fibrin , Humans , Platelet-Rich Fibrin/metabolism , Osteogenesis , Endothelial Cells , Bone and Bones , Coculture Techniques
5.
Int J Biol Macromol ; 262(Pt 1): 129651, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38280707

ABSTRACT

Platelet-rich fibrin (PRF), derived from human blood, rich in wound healing components, has drawbacks in direct injections, such as rapid matrix degradation and growth factor release. Marine polysaccharides, mimicking the human extracellular matrix, show promising potential in tissue engineering. In this study, we impregnated the self-assembled fucoidan/chitosan (FU_CS) hydrogels with PRF obtaining PRF/FU_CS hydrogels. Our objective was to analyze the properties of a hydrogel and the sustained release of growth factors from the hydrogel that incorporates PRF. The results of SEM and BET-BJH demonstrated the relatively porous nature of the FU_CS hydrogels. ELISA data showed that combining FU_CS hydrogel with PRF led to a gradual 7-day sustained release of growth factors (VEGF, EGF, IL-8, PDGF-BB, TGF-ß1), compared to pure PRF. Histology confirmed ELISA data, demonstrating uniform PRF fibrin network distribution within the FU_CS hydrogel matrix. Furthermore, the FU_CS hydrogels revealed excellent cell viability. The results revealed that the PRF/FU_CS hydrogel has the potential to promote wound healing and tissue regeneration. This would be the first step in the search for improved growth factor release.


Subject(s)
Chitosan , Platelet-Rich Fibrin , Humans , Platelet-Rich Fibrin/metabolism , Chitosan/metabolism , Delayed-Action Preparations/pharmacology , Polysaccharides/pharmacology , Polysaccharides/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Hydrogels/pharmacology , Hydrogels/metabolism
6.
Bioengineering (Basel) ; 10(10)2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37892927

ABSTRACT

Human dental pulp stem cells (DPSCs) exhibit multilineage differentiation capabilities and superior clonogenic and proliferative properties. However, the use of animal-derived components such as FBS raises concerns regarding the clinical application of stem-cell-based therapies. Platelet-rich fibrin (PRF) derived from human blood is rich in fibrin, platelets, and growth factors and acts as a bioactive scaffold for grafting with biomaterials. In this study, we assessed the efficacy of PRF-conditioned medium (CM) in promoting DPSCs proliferation and osteogenic differentiation compared with the standard culture medium supplemented with FBS. A comparison of DPSCs cultured in FBS and PRF-CM revealed no differences in characteristics or morphology. However, cells cultured with PRF-CM exhibited inferior proliferation rates and cell numbers during passage in comparison with those cultured with FBS. In contrast, DPSCs cultured in PRF-CM showed significantly higher levels of calcification, and RT-PCR confirmed that the gene expression levels of markers associated with osteoblast differentiation were significantly increased. The PRF-CM approach offers a convenient, straightforward, and advantageous method for culturing DPSCs, without relying on animal-derived components. In summary, this study introduces a novel application of PRF-CM for enhancing the osteogenesis of DPSCs, which provides an alternative to FBS culture medium and addresses concerns associated with the use of animal-derived components in clinical settings.

7.
Methods Protoc ; 5(4)2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35893590

ABSTRACT

The combination of histological and biomolecular analyses provides deep understanding of different biological processes and is of high interest for basic and applied research. However, the available analytical methods are still limited, especially when considering bone samples. This study compared different fixation media to identify a sufficient analytical method for the combination of histological, immuno-histological and biomolecular analyses of the same fixed, processed and paraffin embedded bone sample. Bone core biopsies of rats' femurs were fixed in different media (RNAlater + formaldehyde (R + FFPE), methacarn (MFPE) or formaldehyde (FFPE)) for 1 week prior to decalcification by EDTA and further histological processing and paraffin embedding. Snap freezing (unfixed frozen tissue, UFT) and incubation in RNAlater were used as additional controls. After gaining the paraffin sections for histological and immunohistological analysis, the samples were deparaffined and RNA was isolated by a modified TRIZOL protocol. Subsequently, gene expression was evaluated using RT-qPCR. Comparable histo-morphological and immuno-histological results were evident in all paraffin embedded samples of MFPE, FFPE and R + FFPE. The isolated RNA in the group of MFPE showed a high concentration and high purity, which was comparable to the UFT and RNAlater groups. However, in the groups of FFPE and R + FFPE, the RNA quality and quantity were statistically significantly lower when compared to MFPE, UFT and RNAlater. RT-qPCR results showed a comparable outcome in the group of MFPE and UFT, whereas the groups of FFPE and R + FFPE did not result in a correctly amplified gene product. Sample fixation by means of methacarn is of high interest for clinical samples to allow a combination of histological, immunohistological and biomolecular analysis. The implementation of such evaluation method in clinical research may allow a deeper understanding of the processes of bone formation and regeneration.

8.
Materials (Basel) ; 15(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35160947

ABSTRACT

Objectives: This study evaluated the cellular response of primary osteoblasts exposed to two different presentations of a low-temperature non-sintered deproteinized bovine bone matrix (DBBM). Materials and methods: Six different baths of a commercially available DBBM block (Bonefill® Porous Block) and one of DBBM granule (Bonefill® Porous) were evaluated to identify the mineral structure and organic or cellular remnants. Samples of the same baths were processed in TRIZOL for RNA extraction and quantification. For the immunologic cell reaction assay, primary human osteoblasts (pOB) were exposed to DBMM block (pOB + B) or granules (pOB + G), or none (control) for 1, 3, or 7 days of cell cultivation. Expression of proinflammatory cytokines by pOB was evaluated by crosslinked ELISA assay. In addition, total DNA amount, as well as cell viability via LDH evaluation, was assessed. Results: Organic remnants were present in DBBM blocks; 45.55% (±7.12) of osteocytes lacunae presented cellular remnants in blocks compared to 17.31% (±1.31) in granules. In three of five batches of blocks, it was possible to isolate bovine RNA. The highest concentration of TGF-ß1 was found in supernatants of pOB + G on day 7 (218.85 ± 234.62 pg/mL) (p < 0.05), whereas pOB + B presented the lowest amount of TGF-ß1 secretion at the end of evaluation (30.22 ± 14.94 pg/mL, p < 0.05). For IL-6 and OPG, there was no statistical difference between groups, while pOB + G induced more IL-8 secretion than the control (3.03 ± 3.38 ng/mL, p < 0.05). Considering the kinetics of cytokine release during the study period, all groups presented a similar pattern of cytokines, estimated as an increasing concentration for IL-6, IL-8, and OPG during cultivation. Adherent cells were observed on both material surfaces on day 7, according to H&E and OPN staining. Conclusion: Neither tested material induced a pronounced inflammatory response upon osteoblast cultivation. However, further studies are needed to elucidate the potential influence of organic remnants in bone substitute materials on the regeneration process.

9.
Tissue Eng Part A ; 28(7-8): 353-365, 2022 04.
Article in English | MEDLINE | ID: mdl-34555949

ABSTRACT

Platelet-rich fibrin (PRF) is an autologous blood concentrate that supports tissue regeneration. The effect of the centrifuge rotor angle in the fabrication of PRF is still not fully elucidated. The hypothesis of this study is: When applying the same g-force (relative centrifugal force [RCF]) and centrifugation time, PRF components and bioactivity are not modified using either a swing-out rotor or a fixed angle rotor. For this purpose, peripheral blood samples (from five donors) were used to gain solid (710 ×g, 8 min) and liquid (44 ×g, 8 min) PRF matrices using three different centrifuges (one fixed angle as a control and two different swing-out rotor centrifuges). The physical characteristics of the solid PRF were measured to evaluate the clot formation and cellular distribution. The liquid PRF was used to evaluate the cell number, bioactivity, and influence on primary human osteoblasts (pOBs) and primary human fibroblasts (pHFs) in vitro. Solid PRF clots were significantly larger in the group of fixed rotor centrifuges compared with either of the two evaluated swing-out rotor centrifuges. No differences were observed when evaluating the cellular distribution within the solid PRF. No statistically significant differences were documented in the cell's density in liquid PRF samples (platelets, lymphocytes, neutrophils, eosinophils, and basophils) among the differently gained PRF samples. No statistically significant differences were documented for the released growth factors (vascular endothelial growth factor, epidermal growth factor, and transforming growth factor beta 1) over 7 days. pOBs and pHFs viability after treatment with PRF conditioned media showed no statistically significant differences between the evaluated groups. However, the number of adherent cells treated with PRF obtained with the use of the fixed angle rotor was significantly higher when compared with those treated with PRF obtained by using the swing-out rotors. The presented results confirm that regardless of the centrifuge rotor used, the components and bioactivity of solid and liquid PRF matrices are modified by the applied RCF and centrifugation time. These findings are of great importance for highlighting the essential role of adapting the centrifugation protocols when using different centrifuges and to correctly report the used centrifugation protocols in scientific research to allow for reproducible results. Impact statement Platelet-rich fibrin (PRF) is prepared from autologous peripheral blood and is widely applied in research and clinical treatments. The centrifugation parameters used during the preparation of PRF directly influence its components and bioactivity. By using a standardized protocol, the present study demonstrated that adapting various centrifuges to a standardized relative centrifugal force and centrifugation protocol resulted in reproducible PRF matrices with similar bioactivity, regardless of the centrifuge rotor angle. These findings underline the necessity to carefully adapt and correctly report the used centrifuge and centrifugation protocols in scientific research to allow reproducible results.


Subject(s)
Platelet-Rich Fibrin , Blood Platelets , Centrifugation/methods , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Platelet-Rich Fibrin/metabolism , Vascular Endothelial Growth Factor A/metabolism
10.
Int J Mol Sci ; 22(4)2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33671550

ABSTRACT

INTRODUCTION: Resorbable synthetic scaffolds are promising for different indications, especially in the context of bone regeneration. However, they require additional biological components to enhance their osteogenic potential. In addition to different cell types, autologous blood-derived matrices offer many advantages to enhance the regenerative capacity of biomaterials. The present study aimed to analyze whether biologization of a PCL-mesh coated using differently centrifuged Platelet rich fibrin (PRF) matrices will have a positive influence on primary human osteoblasts activity in vitro. A polymeric resorbable scaffold (Osteomesh, OsteoporeTM (OP), Singapore) was combined with differently centrifuged PRF matrices to evaluate the additional influence of this biologization concept on bone regeneration in vitro. Peripheral blood of three healthy donors was used to gain PRF matrices centrifuged either at High (710× g, 8 min) or Low (44× g, 8 min) relative centrifugal force (RCF) according to the low speed centrifugation concept (LSCC). OP-PRF constructs were cultured with pOBs. POBs cultured on the uncoated OP served as a control. After three and seven days of cultivation, cell culture supernatants were collected to analyze the pOBs activity by determining the concentrations of VEGF, TGF-ß1, PDGF, OPG, IL-8, and ALP- activity. Immunofluorescence staining was used to evaluate the Osteopontin expression of pOBs. After three days, the group of OP+PRFLow+pOBs showed significantly higher expression of IL-8, TGF-ß1, PDGF, and VEGF compared to the group of OP+PRFHigh+pOBs and OP+pOBs. Similar results were observed on day 7. Moreover, OP+PRFLow+pOBs exhibited significantly higher activity of ALP compared to OP+PRFHigh+pOBs and OP+pOBs. Immunofluorescence staining showed a higher number of pOBs adherent to OP+PRFLow+pOBs compared to the groups OP+PRFHigh+pOBs and OP+pOBs. To the best of our knowledge, this study is the first to investigate the osteoblasts activity when cultured on a PRF-coated PCL-mesh in vitro. The presented results suggest that PRFLow centrifuged according to LSCC exhibits autologous blood cells and growth factors, seem to have a significant effect on osteogenesis. Thereby, the combination of OP with PRFLow showed promising results to support bone regeneration. Further in vivo studies are required to verify the results and carry out potential results for clinical translation.


Subject(s)
Biocompatible Materials , Osteoblasts/cytology , Platelet-Rich Fibrin , Tissue Scaffolds , Biocompatible Materials/chemistry , Cell Adhesion , Cells, Cultured , Centrifugation , Culture Media/chemistry , Culture Media/metabolism , Cytokines/metabolism , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Osteoblasts/physiology , Regeneration , Tissue Scaffolds/chemistry
11.
Tissue Eng Part C Methods ; 26(9): 475-484, 2020 09.
Article in English | MEDLINE | ID: mdl-32829670

ABSTRACT

In vitro tissue-engineered cell culture models are an essential instrument to investigate physiological and pathophysiological wound healing mechanisms and to evaluate new beneficial wound dressing materials and therapeutics to identify possible drug targets and to improve regeneration processes in nonhealing and chronic wounds. In this study, the authors established an in vitro model for cutaneous wound healing, based on primary human dermal microvascular endothelial cells (HDMEC) and primary human dermal fibroblasts (HDF) to study wound healing-associated processes. Co-cultivation of HDMEC and HDF results in the formation of microvessel-like structures in long-term co-cultures. The proposed in vitro co-culture model can be easily modified by adding macrophages to simulate the process of inflammation, thus allowing in vitro investigation of pathophysiological wound healing processes present in nonhealing wounds. Furthermore, the beneficial in vitro wound healing model was used to evaluate a porous fiber-based drug delivery dressing material consisting of melt-spun porous fibers that were filled with a hydrogel carrier (gellan gum) containing vascular endothelial growth factor (VEGF). Angiogenic capability was chosen as functional parameter for improved wound healing, and release of deposited VEGF from the dressing material was evaluated up to 7 days of cultivation. The experiments demonstrated that the porous fiber-based drug delivery dressing material for dermal wound healing with incorporated VEGF strongly enhances the process of angiogenesis in the in vitro co-culture model through a release of VEGF over 7 days of cultivation. In conclusion, tissue-engineered human skin equivalents could contribute significantly to the understanding and improvement of drug releasing dressing materials in the context of treating chronic wounds.


Subject(s)
Drug Delivery Systems , Models, Biological , Skin/pathology , Wound Healing , Bandages , Biocompatible Materials/pharmacology , Coculture Techniques , Collagen Type I/metabolism , Dermis/blood supply , Endothelial Cells/pathology , Fibroblasts/pathology , Humans , Microvessels/cytology , Neovascularization, Physiologic , Porosity , Vascular Endothelial Growth Factor A/metabolism , Wounds and Injuries/pathology
12.
J Periodontal Res ; 55(6): 821-829, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32557637

ABSTRACT

BACKGROUND AND OBJECTIVE: Macrophages' cytokine expression and polarization play a substantial role in the host's "destructive" inflammatory response to periodontal and peri-implant pathogens. This study aimed to evaluate cell viability, anti-inflammatory activity, and macrophage polarization properties of different cranberry concentrates. METHODS: THP-1 cells (monocytic line) were treated with phorbol myristic acid to induce macrophage differentiation. Human gingival fibroblasts (HFIB-G cell line), osteosarcoma-derived osteoblasts (SAOS-2 cell line), and induced macrophages were treated with cranberry concentrates at 25, 50, and 100 µg/mL for 120 seconds, 1 hour and 24 hours. Untreated cells at the same time points served as controls. For anti-inflammatory analysis, induced macrophages exposed to cranberry concentrates (A-type PACs) were stimulated with lipopolysaccharides (LPS) derived from E coli for 24 hours. Cell viability, interleukin (IL)-8, IL-1 ß, IL-6, and IL-10 expression of LPS-stimulated macrophages, and macrophage polarization markers were evaluated through determination of live-cell protease activity, enzyme-linked immunosorbent assay, and immunofluorescence staining semi-quantification. RESULTS: Cranberry concentrates (A-type PACs) did not reduce HGF, SAOS-2, and macrophage viability after 24 hours of exposure. Pro-inflammatory cytokine expression (ie IL-8 and IL-6) was downregulated in LPS-stimulated macrophages by cranberry concentrates at 50 and 100 µg/mL. Anti-inflammatory IL-10 expression was significantly upregulated in LPS-stimulated macrophages by cranberry concentrates at 100 µg/mL after 24 hours of exposure. M1 polarization significantly decreased when LPS-stimulated macrophages were exposed to cranberry concentrates. High levels of positive M1 macrophages were present in all untreated control groups. M2 polarization significantly increased at all LPS-stimulated macrophages exposed to cranberry concentrates for 1 and 24 hours. CONCLUSION: Cranberry-derived proanthocyanidins may have the potential to act as an anti-inflammatory component in the therapy of periodontal and peri-implant diseases.


Subject(s)
Anti-Inflammatory Agents , Peri-Implantitis , Proanthocyanidins , Vaccinium macrocarpon , Anti-Inflammatory Agents/pharmacology , Cells, Cultured , Escherichia coli , Humans , Lipopolysaccharides , Macrophages , Peri-Implantitis/drug therapy , Proanthocyanidins/pharmacology
13.
Tissue Eng Part C Methods ; 24(9): 495-503, 2018 09.
Article in English | MEDLINE | ID: mdl-30101647

ABSTRACT

The development of an in vitro model resembling the alveolar-capillary barrier might be a highly beneficial tool to study lung physiology as well as the immune response of the lung to infection or after exposure to nanoparticles. This study is based on an in vitro alveolar barrier developed on a basement membrane mimic, composed of ultrathin nanofiber meshes generated via electrospinning using bioresorbable poly(ɛ-caprolactone). As cellular components, NCI H441, resembling the alveolar epithelial cells, and ISO-HAS-1, an endothelial cell line, were used to perform bipolar coculture experiments for a total cultivation period of 14 days. In addition to immunohistochemical and immunofluorescent studies, transepithelial electrical resistance (TER) and transport capabilities of the in vitro model system were investigated. Alveolar barrier function could be clearly determined for the postulated bipolar coculture system on the basement membrane mimic, since TER increased during the course of bipolar cultivation. Furthermore, to gain first insights into possible lung inflammatory reactions in vitro, this coculture model was further expanded by a human leukemia monocyte cell line (THP-1). This triple-culture system was able to maintain adequately the barrier properties of the bipolar coculture, thus making this in vitro model consisting of epithelial, endothelial, and immune cells on a basement membrane mimic a promising basis for further studies in tissue engineering.


Subject(s)
Basement Membrane/metabolism , Capillaries/metabolism , Coculture Techniques/methods , Pulmonary Alveoli/blood supply , Cell Line , Cell Shape , Cell Survival , Humans , Models, Biological
14.
J Tissue Eng Regen Med ; 12(3): 598-610, 2018 03.
Article in English | MEDLINE | ID: mdl-28509340

ABSTRACT

In the context of prevascularization strategies for tissue-engineering purposes, co-culture systems consisting of outgrowth endothelial cells (OECs) and primary osteoblasts (pOBs) have been established as a promising in vitro tool to study regeneration mechanisms and to identify factors that might positively influence repair processes such as wound healing or angiogenesis. The development of autologous injectable platelet-rich fibrin (PRF), which can be generated from peripheral blood in a minimal invasive procedure, fulfils several requirements for clinically applicable cell-based tissue-engineering strategies. During this study, the established co-culture system of OECs and pOBs was mixed with injectable PRF and was cultivated in vitro for 24 h or 7 days. The aim of this study was to analyse whether PRF might have a positive effect on wound healing processes and angiogenic activation of OECs in the co-culture with regard to proinflammatory factors, adhesion molecules and proangiogenic growth factor expression. Histological cell detection revealed the formation of lumina and microvessel-like structures in the PRF/co-culture complexes after 7 days of complex cultivation. Interestingly, the angiogenic activation of OECs was accompanied by an upregulation of wound healing-associated factors, as well as by a higher expression of the proangiogenic factor vascular endothelial growth factor, which was evaluated both on the mRNA level as well as on the protein level. Thus, PRF might positively influence wound healing processes, in particular angiogenesis, in the in vitro co-culture, making autologous PRF-based matrices a beneficial therapeutic tool for tissue-engineering purposes by simply profiting from the PRF, which contains blood plasma, platelets and leukocytes.


Subject(s)
Bone and Bones/blood supply , Coculture Techniques/methods , Models, Biological , Neovascularization, Physiologic , Platelet-Rich Fibrin/metabolism , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 2/metabolism , Cell Differentiation , Cells, Cultured , Endothelial Cells/cytology , Female , Gene Expression Regulation , Humans , Injections , Male , Microvessels/physiology , Osteoblasts/cytology , Osteogenesis , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Wound Healing
15.
J Tissue Eng Regen Med ; 11(6): 1779-1791, 2017 06.
Article in English | MEDLINE | ID: mdl-26205614

ABSTRACT

The development of new approaches leading to fast and successful vascularization of tissue-engineered constructs is one of the most intensively studied subjects in tissue engineering and regenerative medicine. Recently, TLR4 activation and LPS stimulation of endothelial cells have been reported to promote angiogenesis in a variety of settings. In this study, we demonstrate that TLR4 activation by Ultrapure LPS Escherichia coli 0111:B4 (LPS-EB) significantly enhances microvessel formation in a co-culture system consisting of outgrowth endothelial cells (OECs) and primary human osteoblasts (pOBs). The precise modes of TLR4 action on the process of angiogenesis have also been investigated in this study. Using quantitative fluorescence microscopy in monocultures of OECs and pOBs, it was found that TLR4 activation through LPS-EB upregulates the expression level of TLR4/MYD88 and enhances both angiogenesis and osteogenesis. Furthermore, ELISA and qRT-PCR have shown that the level of two adhesion molecules (ICAM-1 and E-selectin), two cytokines (IL-6 and IL-8) and two growth factors (VEGF and PDGF-BB) related to angiogenesis increase significantly after LPS-EB treatment. This increased understanding of the role of TLR4 in angiogenesis could be of value in various settings related to tissue repair and tissue engineering. Moreover, since LPS and TLR4 agonists improve angiogenesis and osteogenesis, TLR4 agonists (endogenous or synthetic) could be used for angiogenesis intervention in vivo and therefore could be tested for their potential clinical applications in promoting angiogenesis in bone tissue engineering. Copyright © 2015 John Wiley & Sons, Ltd.


Subject(s)
Endothelial Cells/metabolism , Gene Expression Regulation/drug effects , Lipopolysaccharides/pharmacology , Neovascularization, Physiologic/drug effects , Osteoblasts/metabolism , Toll-Like Receptor 4/agonists , Bone and Bones/blood supply , Bone and Bones/cytology , Bone and Bones/metabolism , Coculture Techniques , Endothelial Cells/cytology , Humans , Microvessels/cytology , Microvessels/metabolism , Osteogenesis/drug effects , Tissue Engineering/methods , Toll-Like Receptor 4/metabolism
16.
Adv Drug Deliv Rev ; 94: 116-25, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-25817732

ABSTRACT

One of the major problems with bone tissue engineering is the development of a rapid vascularization after implantation to supply the growing osteoblast cells with the nutrients to grow and survive as well as to remove waste products. It has been demonstrated that capillary-like structures produced in vitro will anastomose rapidly after implantation and become functioning blood vessels. For this reason, in recent years many studies have examined a variety of human osteoblast and endothelial cell co-culture systems in order to distribute osteoblasts on all parts of the bone scaffold and at the same time provide conditions for the endothelial cells to migrate to form a network of capillary-like structures throughout the osteoblast-colonized scaffold. The movement and proliferation of endothelial cells to form capillary-like structures is known as angiogenesis and is dependent on a variety of pro-angiogenic factors. This review summarizes human 2- and 3-D co-culture models to date, the types and origins of cells used in the co-cultures and the proangiogenic factors that have been identified in the co-culture models.


Subject(s)
Endothelial Cells/cytology , Neovascularization, Physiologic/physiology , Osteoblasts/cytology , Osteogenesis/physiology , Cell Proliferation , Coculture Techniques , Endothelial Progenitor Cells/cytology , Humans , Tissue Engineering , Tissue Scaffolds
17.
Biomed Res Int ; 2014: 320123, 2014.
Article in English | MEDLINE | ID: mdl-24967356

ABSTRACT

Bone tissue is a highly vascularized and dynamic system with a complex construction. In order to develop a construct for implant purposes in bone tissue engineering, a proper understanding of the complex dependencies between different cells and cell types would provide further insight into the highly regulated processes during bone repair, namely, angiogenesis and osteogenesis, and might result in sufficiently equipped constructs to be beneficial to patients and thereby accomplish their task. This study is based on an in vitro coculture model consisting of outgrowth endothelial cells and primary osteoblasts and is currently being used in different studies of bone repair processes with special regard to angiogenesis and osteogenesis. Coculture systems of OECs and pOBs positively influence the angiogenic potential of endothelial cells by inducing the formation of angiogenic structures in long-term cultures. Although many studies have focused on cell communication, there are still numerous aspects which remain poorly understood. Therefore, the aim of this study is to investigate certain growth factors and cell communication molecules that are important during bone repair processes. Selected growth factors like VEGF, angiopoietins, BMPs, and IGFs were investigated during angiogenesis and osteogenesis and their expression in the cultures was observed and compared after one and four weeks of cultivation. In addition, to gain a better understanding on the origin of different growth factors, both direct and indirect coculture strategies were employed. Another important focus of this study was to investigate the role of "gap junctions," small protein pores which connect adjacent cells. With these bridges cells are able to exchange signal molecules, growth factors, and other important mediators. It could be shown that connexins, the gap junction proteins, were located around cell nuclei, where they await their transport to the cell membrane. In addition, areas in which two cells formed gap junctions were found.


Subject(s)
Cell Communication , Endothelial Cells/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Neovascularization, Physiologic , Osteoblasts/metabolism , Osteogenesis , Cells, Cultured , Coculture Techniques , Endothelial Cells/cytology , Female , Gap Junctions/metabolism , Humans , Male , Osteoblasts/cytology
18.
Life Sci ; 91(21-22): 973-6, 2012 Nov 27.
Article in English | MEDLINE | ID: mdl-22569291

ABSTRACT

AIMS: The non-neuronal cholinergic system is widely expressed in nature. The present experiments were performed to characterize the non-neuronal cholinergic system in murine embryonic stem cells (CGR8 cell line). MAIN METHODS: CGR8 cells were cultured in gelatinized flasks with Glasgow's buffered minimal essential medium (Gibco, Germany). Acetylcholine was measured by HPLC combined with bioreactor and electrochemical detection. KEY FINDINGS: CGR8 cells contained 1.08±0.12 pmol acetylcholine/10(6) cells (n=7) which was reduced to 0.50±0.06 pmol/10(6) cells (n=6; p<0.05) in the presence (4h) of 30µM bromoacetylcholine to block choline acetyltransferase. A time-dependent release of acetylcholine into the incubation medium was demonstrated, when cholinesterase activity was blocked by 10 µM physostigmine, with 97±13, 180±15 and 216±14 pmol being released from 65×10(6) cells after incubation periods of 2, 4 and 6h, respectively. The cumulative release corresponds to a fractional release rate of 2%/min. Blockade of nicotine or muscarine receptors did not significantly modulate the release of acetylcholine which was substantially reduced by 300 µM quinine (inhibitor of organic cation transporters). This inhibition showed considerable fading over the incubation period, indicating additional release mechanisms activated upon inhibition of organic cation transporters. SIGNIFICANCE: Murine embryonic stem cells contain and release significant amounts of acetylcholine. The high fractional release rate and the compensation for blocked organic cation transporters indicate that non-neuronal acetylcholine may play a functional role in the homeostasis of murine embryonic stem cells.


Subject(s)
Acetylcholine/metabolism , Cation Transport Proteins/antagonists & inhibitors , Embryonic Stem Cells/metabolism , Quinine/pharmacology , Receptors, Muscarinic/metabolism , Receptors, Nicotinic/metabolism , Animals , Cell Line , Cholinesterase Inhibitors/pharmacology , Cholinesterases/metabolism , Mice , Muscarinic Agonists/pharmacology , Muscarinic Antagonists/pharmacology , Nicotinic Antagonists/pharmacology , Oxotremorine/pharmacology , Physostigmine/pharmacology
19.
Vitam Horm ; 88: 491-506, 2012.
Article in English | MEDLINE | ID: mdl-22391318

ABSTRACT

Sonic hedgehog (Shh) is a morphogen controlling the skeletal and vascular development in the embryo but is also reactivated during adult repair processes. Thus, this molecule holds great therapeutic potential for biotechnological and biomedical approaches aiming to enhance tissue regeneration or to replace damaged tissues. According to present knowledge, Shh signaling controls the expression of several families of growth factors involved in neovascularization and vessel maturation and acts upstream of the most prominent angiogenic growth factor, vascular endothelial growth factor. In this context, a very interesting feature of Shh is that it controls both angiogenic activity and vessel stabilization by mural cells. In parallel, Shh seems to have a direct effect on endothelial cell tube formation and seems to trigger the differentiation process of mesenchymal stem cells toward the osteogenic lineage. In this chapter, we will therefore shortly summarize the multifaceted potential of Shh for bone repair and vascularization according to the current literature. In addition, we will show how coculture models based on outgrowth endothelial cells and primary osteoblasts can be used to reveal some of the relevant mechanisms by which Shh drives and connects bone regeneration and vascularization.


Subject(s)
Angiogenesis Inducing Agents/pharmacology , Bone Regeneration/physiology , Hedgehog Proteins/physiology , Neovascularization, Physiologic , Osteogenesis/physiology , Angiopoietins/metabolism , Coculture Techniques , Humans , Neovascularization, Physiologic/drug effects , Osteogenesis/drug effects , Vascular Endothelial Growth Factor A/metabolism
20.
Tissue Eng Part A ; 17(17-18): 2199-212, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21529248

ABSTRACT

Mesenchymal stem cells (MSC) from bone marrow and outgrowth endothelial cells (OEC) from peripheral blood are considered as attractive cell types for applications in regenerative medicine aiming to build up complex vascularized tissue-engineered constructs. MSC provide several advantages such as the potential to differentiate to osteoblasts and to support the neovascularization process by release of proangiogenic factors. On the other hand, the neovascularization process can be actively supported by OEC forming perfused vascular structures after co-implantation with other cell types. In this study the formation of angiogenic structures in vitro was investigated in cocultures of MSC and OEC, cultured either in the medium for osteogenic differentiation of MSC (ODM) or in the medium for OEC cultivation endothelial cell growth medium-2 (EGM2 Bullet Kit). After 2 weeks, cocultures in EGM2 formed more microvessel-like structures compared to cocultures in ODM as demonstrated by immunofluorescence staining for the endothelial marker CD31. Increased expression of CD31 and CD146 in quantitative real-time polymerase chain reaction as well as a higher percentage of CD31- and CD146-positive cells in flow cytometry indicated a beneficial influence of EGM2 on endothelial cell growth and function. In addition, the improved formation of vascular structures in EGM2 correlates with higher levels of the proangiogenic factor vascular endothelial growth factor and platelet-derived growth factor in the supernatant of cocultures as well as in monocultures of MSC when cultivated in EGM-2. Nevertheless, ODM was more suitable for the differentiation of MSC to osteoblastic lineages in the cocultures, whereas EGM2 favored factors involved in vessel stabilization by pericytes. In conclusion, this study highlights the importance of medium components for cell interaction triggering the formation of angiogenic structures.


Subject(s)
Culture Media/pharmacology , Endothelial Cells/cytology , Mesenchymal Stem Cells/cytology , CD146 Antigen/genetics , CD146 Antigen/metabolism , Cell Differentiation/drug effects , Cells, Cultured , Coculture Techniques , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Fluorescent Antibody Technique , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...