Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Physiol (Oxf) ; 222(4): e13009, 2018 04.
Article in English | MEDLINE | ID: mdl-29197155

ABSTRACT

AIM: Metabolic health may deteriorate with age as a result of altered body composition and decreased physical activity. Endurance exercise is known to counter these changes delaying or even preventing onset of metabolic diseases. High-intensity interval training (HIIT) is a time efficient alternative to regular endurance exercise, and the aim of this study was to investigate the metabolic benefit of HIIT in older subjects. METHODS: Twenty-two sedentary male (n = 11) and female (n = 11) subjects aged 63 ± 1 years performed HIIT training three times/week for 6 weeks on a bicycle ergometer. Each HIIT session consisted of five 1-minute intervals interspersed with 1½-minute rest. Prior to the first and after the last HIIT session whole-body insulin sensitivity, measured by a hyperinsulinaemic-euglycaemic clamp, plasma lipid levels, HbA1c, glycaemic parameters, body composition and maximal oxygen uptake were assessed. Muscle biopsies were obtained wherefrom content of glycogen and proteins involved in muscle glucose handling were determined. RESULTS: Insulin sensitivity (P = .011) and maximal oxygen uptake increased (P < .05) in both genders, while plasma cholesterol (P < .05), low-density lipoprotein (P < .05), visceral fat mass (P < .05) and per cent body fat (P < .05) decreased after 6 weeks of HIIT. HbA1c decreased only in males (P = .001). Muscle glycogen content increased in both genders (P = .001) and in line GLUT4 (P < .05), glycogen synthase (P = .001) and hexokinase II (P < .05) content all increased. CONCLUSION: Six weeks of HIIT significantly improves metabolic health in older males and females by reducing age-related risk factors for cardiometabolic disease.


Subject(s)
High-Intensity Interval Training/methods , Insulin Resistance/physiology , Blood Glucose/metabolism , Body Composition/physiology , Female , Humans , Male , Middle Aged , Oxygen Consumption/physiology
2.
Acta Physiol (Oxf) ; 213(1): 145-55, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24684826

ABSTRACT

AIM: Mitochondria undergo continuous changes in shape as result of complex fusion and fission processes. The physiological relevance of mitochondrial dynamics is still unclear. In the field of mitochondria bioenergetics, there is a need of tools to assess cell mitochondrial content. To develop a method to visualize mitochondrial networks in high resolution and assess mitochondrial volume. METHODS: Confocal fluorescence microscopy imaging of mitochondrial network stains in human vastus lateralis single muscle fibres and focused ion beam/ scanning electron microscopy (FIB/SEM) imaging, combined with 3D reconstruction was used as a tool to analyse mitochondrial morphology and measure mitochondrial fractional volume. RESULTS: Most type I and type II muscle fibres have tubular highly interconnected profusion mitochondria, which are thicker and more structured in type I muscle fibres (Fig. 1). In some muscle fibres, profission-isolated ellipsoid-shaped mitochondria were observed. Mitochondrial volume was significantly higher in type I muscle fibres and showed no correlation with any of the investigated molecular and biochemical mitochondrial measurements (Fig. 2). Three-dimensional reconstruction of FIB/SEM data sets shows that some subsarcolemmal mitochondria are physically interconnected with some intermyofibrillar mitochondria (Fig. 3). CONCLUSION: Two microscopy methods to visualize skeletal muscle mitochondrial networks in 3D are described and can be used as tools to investigate mitochondrial dynamics in response to life-style interventions and/or in certain pathologies. Our results question the classification of mitochondria into subsarcolemmal and intermyofibrillar pools, as they are physically interconnected.


Subject(s)
Energy Metabolism/physiology , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Mitochondria , Muscle, Skeletal/cytology , Adult , Humans , Imaging, Three-Dimensional/methods , Male , Middle Aged , Mitochondria/metabolism , Muscle Fibers, Slow-Twitch/cytology , Muscle, Skeletal/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...