Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Mol Psychiatry ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693319

ABSTRACT

Reduced processing speed is a core deficit in major depressive disorder (MDD) and has been linked to altered structural brain network connectivity. Ample evidence highlights the involvement of genetic-immunological processes in MDD and specific depressive symptoms. Here, we extended these findings by examining associations between polygenic scores for tumor necrosis factor-α blood levels (TNF-α PGS), structural brain connectivity, and processing speed in a large sample of MDD patients. Processing speed performance of n = 284 acutely depressed, n = 177 partially and n = 198 fully remitted patients, and n = 743 healthy controls (HC) was estimated based on five neuropsychological tests. Network-based statistic was used to identify a brain network associated with processing speed. We employed general linear models to examine the association between TNF-α PGS and processing speed. We investigated whether network connectivity mediates the association between TNF-α PGS and processing speed. We identified a structural network positively associated with processing speed in the whole sample. We observed a significant negative association between TNF-α PGS and processing speed in acutely depressed patients, whereas no association was found in remitted patients and HC. The mediation analysis revealed that brain connectivity partially mediated the association between TNF-α PGS and processing speed in acute MDD. The present study provides evidence that TNF-α PGS is associated with decreased processing speed exclusively in patients with acute depression. This association was partially mediated by structural brain connectivity. Using multimodal data, the current findings advance our understanding of cognitive dysfunction in MDD and highlight the involvement of genetic-immunological processes in its pathomechanisms.

2.
Mol Psychiatry ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553539

ABSTRACT

Recurrences of depressive episodes in major depressive disorder (MDD) can be explained by the diathesis-stress model, suggesting that stressful life events (SLEs) can trigger MDD episodes in individuals with pre-existing vulnerabilities. However, the longitudinal neurobiological impact of SLEs on gray matter volume (GMV) in MDD and its interaction with early-life adversity remains unresolved. In 754 participants aged 18-65 years (362 MDD patients; 392 healthy controls; HCs), we assessed longitudinal associations between SLEs (Life Events Questionnaire) and whole-brain GMV changes (3 Tesla MRI) during a 2-year interval, using voxel-based morphometry in SPM12/CAT12. We also explored the potential moderating role of childhood maltreatment (Childhood Trauma Questionnaire) on these associations. Over the 2-year interval, HCs demonstrated significant GMV reductions in the middle frontal, precentral, and postcentral gyri in response to higher levels of SLEs, while MDD patients showed no such GMV changes. Childhood maltreatment did not moderate these associations in either group. However, MDD patients who had at least one depressive episode during the 2-year interval, compared to those who did not, or HCs, showed GMV increases in the middle frontal, precentral, and postcentral gyri associated with an increase in SLEs and childhood maltreatment. Our findings indicate distinct GMV changes in response to SLEs between MDD patients and HCs. GMV decreases in HCs may represent adaptive responses to stress, whereas GMV increases in MDD patients with both childhood maltreatment and a depressive episode during the 2-year interval may indicate maladaptive changes, suggesting a neural foundation for the diathesis-stress model in MDD recurrences.

3.
Neuropsychopharmacology ; 49(5): 814-823, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38332015

ABSTRACT

Patients with bipolar disorder (BD) show alterations in both gray matter volume (GMV) and white matter (WM) integrity compared with healthy controls (HC). However, it remains unclear whether the phenotypically distinct BD subtypes (BD-I and BD-II) also exhibit brain structural differences. This study investigated GMV and WM differences between HC, BD-I, and BD-II, along with clinical and genetic associations. N = 73 BD-I, n = 63 BD-II patients and n = 136 matched HC were included. Using voxel-based morphometry and tract-based spatial statistics, main effects of group in GMV and fractional anisotropy (FA) were analyzed. Associations between clinical and genetic features and GMV or FA were calculated using regression models. For FA but not GMV, we found significant differences between groups. BD-I patients showed lower FA compared with BD-II patients (ptfce-FWE = 0.006), primarily in the anterior corpus callosum. Compared with HC, BD-I patients exhibited lower FA in widespread clusters (ptfce-FWE < 0.001), including almost all major projection, association, and commissural fiber tracts. BD-II patients also demonstrated lower FA compared with HC, although less pronounced (ptfce-FWE = 0.049). The results remained unchanged after controlling for clinical and genetic features, for which no independent associations with FA or GMV emerged. Our findings suggest that, at a neurobiological level, BD subtypes may reflect distinct degrees of disease expression, with increasing WM microstructure disruption from BD-II to BD-I. This differential magnitude of microstructural alterations was not clearly linked to clinical and genetic variables. These findings should be considered when discussing the classification of BD subtypes within the spectrum of affective disorders.


Subject(s)
Bipolar Disorder , White Matter , Humans , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/genetics , Gray Matter/diagnostic imaging , Brain , White Matter/diagnostic imaging , Cerebral Cortex , Anisotropy
4.
JAMA Psychiatry ; 81(4): 386-395, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38198165

ABSTRACT

Importance: Biological psychiatry aims to understand mental disorders in terms of altered neurobiological pathways. However, for one of the most prevalent and disabling mental disorders, major depressive disorder (MDD), no informative biomarkers have been identified. Objective: To evaluate whether machine learning (ML) can identify a multivariate biomarker for MDD. Design, Setting, and Participants: This study used data from the Marburg-Münster Affective Disorders Cohort Study, a case-control clinical neuroimaging study. Patients with acute or lifetime MDD and healthy controls aged 18 to 65 years were recruited from primary care and the general population in Münster and Marburg, Germany, from September 11, 2014, to September 26, 2018. The Münster Neuroimaging Cohort (MNC) was used as an independent partial replication sample. Data were analyzed from April 2022 to June 2023. Exposure: Patients with MDD and healthy controls. Main Outcome and Measure: Diagnostic classification accuracy was quantified on an individual level using an extensive ML-based multivariate approach across a comprehensive range of neuroimaging modalities, including structural and functional magnetic resonance imaging and diffusion tensor imaging as well as a polygenic risk score for depression. Results: Of 1801 included participants, 1162 (64.5%) were female, and the mean (SD) age was 36.1 (13.1) years. There were a total of 856 patients with MDD (47.5%) and 945 healthy controls (52.5%). The MNC replication sample included 1198 individuals (362 with MDD [30.1%] and 836 healthy controls [69.9%]). Training and testing a total of 4 million ML models, mean (SD) accuracies for diagnostic classification ranged between 48.1% (3.6%) and 62.0% (4.8%). Integrating neuroimaging modalities and stratifying individuals based on age, sex, treatment, or remission status does not enhance model performance. Findings were replicated within study sites and also observed in structural magnetic resonance imaging within MNC. Under simulated conditions of perfect reliability, performance did not significantly improve. Analyzing model errors suggests that symptom severity could be a potential focus for identifying MDD subgroups. Conclusion and Relevance: Despite the improved predictive capability of multivariate compared with univariate neuroimaging markers, no informative individual-level MDD biomarker-even under extensive ML optimization in a large sample of diagnosed patients-could be identified.


Subject(s)
Depressive Disorder, Major , Humans , Female , Male , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/pathology , Diffusion Tensor Imaging , Cohort Studies , Reproducibility of Results , Magnetic Resonance Imaging , Biomarkers
5.
Mol Psychiatry ; 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38278993

ABSTRACT

Biased emotion processing has been suggested to underlie the etiology and maintenance of depression. Neuroimaging studies have shown mood-congruent alterations in amygdala activity in patients with acute depression, even during early, automatic stages of emotion processing. However, due to a lack of prospective studies over periods longer than 8 weeks, it is unclear whether these neurofunctional abnormalities represent a persistent correlate of depression even in remission. In this prospective case-control study, we aimed to examine brain functional correlates of automatic emotion processing in the long-term course of depression. In a naturalistic design, n = 57 patients with acute major depressive disorder (MDD) and n = 37 healthy controls (HC) were assessed with functional magnetic resonance imaging (fMRI) at baseline and after 2 years. Patients were divided into two subgroups according to their course of illness during the study period (n = 37 relapse, n = 20 no-relapse). During fMRI, participants underwent an affective priming task that assessed emotion processing of subliminally presented sad and happy compared to neutral face stimuli. A group × time × condition (3 × 2 × 2) ANOVA was performed for the amygdala as region-of-interest (ROI). At baseline, there was a significant group × condition interaction, resulting from amygdala hyperactivity to sad primes in patients with MDD compared to HC, whereas no difference between groups emerged for happy primes. In both patient subgroups, amygdala hyperactivity to sad primes persisted after 2 years, regardless of relapse or remission at follow-up. The results suggest that amygdala hyperactivity during automatic processing of negative stimuli persists during remission and represents a trait rather than a state marker of depression. Enduring neurofunctional abnormalities may reflect a consequence of or a vulnerability to depression.

6.
Psychol Med ; 54(6): 1215-1227, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37859592

ABSTRACT

BACKGROUND: Schizotypy represents an index of psychosis-proneness in the general population, often associated with childhood trauma exposure. Both schizotypy and childhood trauma are linked to structural brain alterations, and it is possible that trauma exposure moderates the extent of brain morphological differences associated with schizotypy. METHODS: We addressed this question using data from a total of 1182 healthy adults (age range: 18-65 years old, 647 females/535 males), pooled from nine sites worldwide, contributing to the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Schizotypy working group. All participants completed both the Schizotypal Personality Questionnaire Brief version (SPQ-B), and the Childhood Trauma Questionnaire (CTQ), and underwent a 3D T1-weighted brain MRI scan from which regional indices of subcortical gray matter volume and cortical thickness were determined. RESULTS: A series of multiple linear regressions revealed that differences in cortical thickness in four regions-of-interest were significantly associated with interactions between schizotypy and trauma; subsequent moderation analyses indicated that increasing levels of schizotypy were associated with thicker left caudal anterior cingulate gyrus, right middle temporal gyrus and insula, and thinner left caudal middle frontal gyrus, in people exposed to higher (but not low or average) levels of childhood trauma. This was found in the context of morphological changes directly associated with increasing levels of schizotypy or increasing levels of childhood trauma exposure. CONCLUSIONS: These results suggest that alterations in brain regions critical for higher cognitive and integrative processes that are associated with schizotypy may be enhanced in individuals exposed to high levels of trauma.


Subject(s)
Adverse Childhood Experiences , Psychological Tests , Schizotypal Personality Disorder , Self Report , Adult , Male , Female , Humans , Adolescent , Young Adult , Middle Aged , Aged , Schizotypal Personality Disorder/diagnostic imaging , Schizotypal Personality Disorder/psychology , Brain/diagnostic imaging , Gray Matter , Magnetic Resonance Imaging/methods
7.
Psychol Med ; 54(5): 940-950, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37681274

ABSTRACT

BACKGROUND: Magnetic resonance imaging (MRI) studies on major depressive disorder (MDD) have predominantly found short-term electroconvulsive therapy (ECT)-related gray matter volume (GMV) increases, but research on the long-term stability of such changes is missing. Our aim was to investigate long-term GMV changes over a 2-year period after ECT administration and their associations with clinical outcome. METHODS: In this nonrandomized longitudinal study, patients with MDD undergoing ECT (n = 17) are assessed three times by structural MRI: Before ECT (t0), after ECT (t1) and 2 years later (t2). A healthy (n = 21) and MDD non-ECT (n = 33) control group are also measured three times within an equivalent time interval. A 3(group) × 3(time) ANOVA on whole-brain level and correlation analyses with clinical outcome variables is performed. RESULTS: Analyses yield a significant group × time interaction (pFWE < 0.001) resulting from significant volume increases from t0 to t1 and decreases from t1 to t2 in the ECT group, e.g., in limbic areas. There are no effects of time in both control groups. Volume increases from t0 to t1 correlate with immediate and delayed symptom increase, while volume decreases from t1 to t2 correlate with long-term depressive outcome (all p ⩽ 0.049). CONCLUSIONS: Volume increases induced by ECT appear to be a transient phenomenon as volume strongly decreased 2 years after ECT. Short-term volume increases are associated with less symptom improvement suggesting that the antidepressant effect of ECT is not due to volume changes. Larger volume decreases are associated with poorer long-term outcome highlighting the interplay between disease progression and structural changes.


Subject(s)
Depressive Disorder, Major , Electroconvulsive Therapy , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/therapy , Depressive Disorder, Major/pathology , Electroconvulsive Therapy/methods , Depression , Longitudinal Studies , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods
8.
Front Aging Neurosci ; 15: 1085153, 2023.
Article in English | MEDLINE | ID: mdl-37920384

ABSTRACT

Background: Controllability is a measure of the brain's ability to orchestrate neural activity which can be quantified in terms of properties of the brain's network connectivity. Evidence from the literature suggests that aging can exert a general effect on whole-brain controllability. Mounting evidence, on the other hand, suggests that parenthood and motherhood in particular lead to long-lasting changes in brain architecture that effectively slow down brain aging. We hypothesize that parenthood might preserve brain controllability properties from aging. Methods: In a sample of 814 healthy individuals (aged 33.9 ± 12.7 years, 522 females), we estimate whole-brain controllability and compare the aging effects in subjects with vs. those without children. We use diffusion tensor imaging (DTI) to estimate the brain structural connectome. The level of brain control is then calculated from the connectomic properties of the brain structure. Specifically, we measure the network control over many low-energy state transitions (average controllability) and the network control over difficult-to-reach states (modal controllability). Results and conclusion: In nulliparous females, whole-brain average controllability increases, and modal controllability decreases with age, a trend that we do not observe in parous females. Statistical comparison of the controllability metrics shows that modal controllability is higher and average controllability is lower in parous females compared to nulliparous females. In men, we observed the same trend, but the difference between nulliparous and parous males do not reach statistical significance. Our results provide strong evidence that parenthood contradicts aging effects on brain controllability and the effect is stronger in mothers.

9.
Mol Psychiatry ; 28(11): 4613-4621, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37714950

ABSTRACT

Childhood maltreatment (CM) has been associated with changes in structural brain connectivity even in the absence of mental illness. Social support, an important protective factor in the presence of childhood maltreatment, has been positively linked to white matter integrity. However, the shared effects of current social support and CM and their association with structural connectivity remain to be investigated. They might shed new light on the neurobiological basis of the protective mechanism of social support. Using connectome-based predictive modeling (CPM), we analyzed structural connectomes of N = 904 healthy adults derived from diffusion-weighted imaging. CPM predicts phenotypes from structural connectivity through a cross-validation scheme. Distinct and shared networks of white matter tracts predicting childhood trauma questionnaire scores and the social support questionnaire were identified. Additional analyses were applied to assess the stability of the results. CM and social support were predicted significantly from structural connectome data (all rs ≥ 0.119, all ps ≤ 0.016). Edges predicting CM and social support were inversely correlated, i.e., positively correlated with CM and negatively with social support, and vice versa, with a focus on frontal and temporal regions including the insula and superior temporal lobe. CPM reveals the predictive value of the structural connectome for CM and current social support. Both constructs are inversely associated with connectivity strength in several brain tracts. While this underlines the interconnectedness of these experiences, it suggests social support acts as a protective factor following adverse childhood experiences, compensating for brain network alterations. Future longitudinal studies should focus on putative moderating mechanisms buffering these adverse experiences.


Subject(s)
Child Abuse , Connectome , Psychological Tests , Self Report , White Matter , Adult , Humans , Child , Connectome/methods , Magnetic Resonance Imaging , Brain
10.
Transl Psychiatry ; 13(1): 170, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37202406

ABSTRACT

Repeated hospitalizations are a characteristic of severe disease courses in patients with affective disorders (PAD). To elucidate how a hospitalization during a nine-year follow-up in PAD affects brain structure, a longitudinal case-control study (mean [SD] follow-up period 8.98 [2.20] years) was conducted using structural neuroimaging. We investigated PAD (N = 38) and healthy controls (N = 37) at two sites (University of Münster, Germany, Trinity College Dublin, Ireland). PAD were divided into two groups based on the experience of in-patient psychiatric treatment during follow-up. Since the Dublin-patients were outpatients at baseline, the re-hospitalization analysis was limited to the Münster site (N = 52). Voxel-based morphometry was employed to examine hippocampus, insula, dorsolateral prefrontal cortex and whole-brain gray matter in two models: (1) group (patients/controls)×time (baseline/follow-up) interaction; (2) group (hospitalized patients/not-hospitalized patients/controls)×time interaction. Patients lost significantly more whole-brain gray matter volume of superior temporal gyrus and temporal pole compared to HC (pFWE = 0.008). Patients hospitalized during follow-up lost significantly more insular volume than healthy controls (pFWE = 0.025) and more volume in their hippocampus compared to not-hospitalized patients (pFWE = 0.023), while patients without re-hospitalization did not differ from controls. These effects of hospitalization remained stable in a smaller sample excluding patients with bipolar disorder. PAD show gray matter volume decline in temporo-limbic regions over nine years. A hospitalization during follow-up comes with intensified gray matter volume decline in the insula and hippocampus. Since hospitalizations are a correlate of severity, this finding corroborates and extends the hypothesis that a severe course of disease has detrimental long-term effects on temporo-limbic brain structure in PAD.


Subject(s)
Bipolar Disorder , Magnetic Resonance Imaging , Humans , Case-Control Studies , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Gray Matter/diagnostic imaging , Bipolar Disorder/diagnostic imaging , Hospitalization
11.
Biol Psychiatry ; 94(8): 650-660, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37028741

ABSTRACT

BACKGROUND: Negative stressful life events and deprivation of social support play critical roles in the development and maintenance of major depressive disorder (MDD). The present study aimed to investigate in a large sample of patients with MDD and healthy control participants (HCs) whether these effects are also reflected in white matter (WM) integrity. METHODS: In this diffusion tensor imaging study, 793 patients with MDD and 793 age- and sex-matched HCs were drawn from the Marburg-Münster Affective Disorders Cohort Study (MACS) and completed the Life Events Questionnaire (LEQ) and Social Support Questionnaire (SSQ). Generalized linear models were performed to test voxelwise associations between fractional anisotropy (FA) and diagnosis (analysis 1), LEQ (analysis 2), and SSQ (analysis 3). We examined whether SSQ interacts with LEQ on FA or is independently associated with improved WM integrity (analysis 4). RESULTS: Patients with MDD showed lower FA in several frontotemporal association fibers compared with HCs (pTFCE-FWE = .028). Across both groups, LEQ correlated negatively with FA in widely distributed WM tracts (pTFCE-FWE = .023), while SSQ correlated positively with FA in the corpus callosum (pTFCE-FWE = .043). Modeling the combined association of both variables on FA revealed significant-and antagonistic-main effects of LEQ (pTFCE-FWE = .031) and SSQ (pTFCE-FWE = .037), but no interaction of SSQ × LEQ. CONCLUSIONS: Our results indicate that negative stressful life events and social support are both related to WM integrity in opposing directions. The associations did not differ between patients with MDD and HCs, suggesting more general, rather than depression-specific, mechanisms. Furthermore, social support appears to contribute to improved WM integrity independent of stressful life events.


Subject(s)
Depressive Disorder, Major , White Matter , Humans , White Matter/diagnostic imaging , Diffusion Tensor Imaging , Depressive Disorder, Major/diagnostic imaging , Cohort Studies , Anisotropy , Social Support
12.
Brain Imaging Behav ; 17(4): 414-424, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37012575

ABSTRACT

Obesity is associated with alterations in brain structure and function, particularly in areas related to reward processing. Although brain structural investigations have demonstrated a continuous association between higher body weight and reduced gray matter in well-powered samples, functional neuroimaging studies have typically only contrasted individuals from the normal weight and obese body mass index (BMI) ranges with modest sample sizes. It remains unclear, whether the commonly found hyperresponsiveness of the reward circuit can (a) be replicated in well-powered studies and (b) be found as a function of higher body weight even below the threshold of clinical obesity. 383 adults across the weight spectrum underwent functional magnetic resonance imaging during a common card-guessing paradigm simulating monetary reward. Multiple regression was used to investigate the association of BMI and neural activation in the reward circuit. In addition, a one-way ANOVA model comparing three weight groups (normal weight, overweight, obese) was calculated. Higher BMI was associated with higher reward response in the bilateral insula. This association could no longer be found when participants with obesity were excluded from the analysis. The ANOVA revealed higher activation in obese vs. lean, but no difference between lean and overweight participants. The overactivation of reward-related brain areas in obesity is a consistent finding that can be replicated in large samples. In contrast to brain structural aberrations associated with higher body weight, the neurofunctional underpinnings of reward processing in the insula appear to be more pronounced in the higher body weight range.


Subject(s)
Magnetic Resonance Imaging , Overweight , Adult , Humans , Overweight/diagnostic imaging , Obesity/diagnostic imaging , Brain/physiology , Body Mass Index , Reward
13.
Neuropsychology ; 37(3): 315-329, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37011159

ABSTRACT

OBJECTIVE: A major limitation of current suicide research is the lack of power to identify robust correlates of suicidal thoughts or behavior. Variation in suicide risk assessment instruments used across cohorts may represent a limitation to pooling data in international consortia. METHOD: Here, we examine this issue through two approaches: (a) an extensive literature search on the reliability and concurrent validity of the most commonly used instruments and (b) by pooling data (N ∼ 6,000 participants) from cohorts from the Enhancing NeuroImaging Genetics Through Meta-Analysis (ENIGMA) Major Depressive Disorder and ENIGMA-Suicidal Thoughts and Behaviour working groups, to assess the concurrent validity of instruments currently used for assessing suicidal thoughts or behavior. RESULTS: We observed moderate-to-high correlations between measures, consistent with the wide range (κ range: 0.15-0.97; r range: 0.21-0.94) reported in the literature. Two common multi-item instruments, the Columbia Suicide Severity Rating Scale and the Beck Scale for Suicidal Ideation were highly correlated with each other (r = 0.83). Sensitivity analyses identified sources of heterogeneity such as the time frame of the instrument and whether it relies on self-report or a clinical interview. Finally, construct-specific analyses suggest that suicide ideation items from common psychiatric questionnaires are most concordant with the suicide ideation construct of multi-item instruments. CONCLUSIONS: Our findings suggest that multi-item instruments provide valuable information on different aspects of suicidal thoughts or behavior but share a modest core factor with single suicidal ideation items. Retrospective, multisite collaborations including distinct instruments should be feasible provided they harmonize across instruments or focus on specific constructs of suicidality. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/diagnosis , Reproducibility of Results , Retrospective Studies , Suicidal Ideation , Risk Assessment
14.
PNAS Nexus ; 2(2): pgad032, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36874281

ABSTRACT

Electroconvulsive Therapy (ECT) is arguably the most effective intervention for treatment-resistant depression. While large interindividual variability exists, a theory capable of explaining individual response to ECT remains elusive. To address this, we posit a quantitative, mechanistic framework of ECT response based on Network Control Theory (NCT). Then, we empirically test our approach and employ it to predict ECT treatment response. To this end, we derive a formal association between Postictal Suppression Index (PSI)-an ECT seizure quality index-and whole-brain modal and average controllability, NCT metrics based on white-matter brain network architecture, respectively. Exploiting the known association of ECT response and PSI, we then hypothesized an association between our controllability metrics and ECT response mediated by PSI. We formally tested this conjecture in N = 50 depressive patients undergoing ECT. We show that whole-brain controllability metrics based on pre-ECT structural connectome data predict ECT response in accordance with our hypotheses. In addition, we show the expected mediation effects via PSI. Importantly, our theoretically motivated metrics are at least on par with extensive machine learning models based on pre-ECT connectome data. In summary, we derived and tested a control-theoretic framework capable of predicting ECT response based on individual brain network architecture. It makes testable, quantitative predictions regarding individual therapeutic response, which are corroborated by strong empirical evidence. Our work might constitute a starting point for a comprehensive, quantitative theory of personalized ECT interventions rooted in control theory.

15.
J Affect Disord ; 329: 404-412, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36842646

ABSTRACT

BACKGROUND: The second-generation antipsychotic (SGA) quetiapine is an essential option for antidepressant augmentation therapy in major depressive disorder (MDD), yet neurobiological mechanisms behind its antidepressant properties remain unclear. As SGAs interfere with activity in reward-related brain areas, including the anterior cingulate cortex (ACC) - a key brain region in antidepressant interventions, this study examined whether quetiapine treatment affects ACC activity during reward processing in MDD patients. METHODS: Using the ACC as region of interest, an independent t-test comparing reward-related BOLD response of 51 quetiapine-taking and 51 antipsychotic-free MDD patients was conducted. Monetary reward outcome feedback was measured in a card-guessing paradigm using pseudorandom blocks. Participants were matched for age, sex, and depression severity and analyses were controlled for confounding variables, including total antidepressant medication load, illness chronicity and acute depression severity. Potential dosage effects were examined in a 3 × 1 ANOVA. Differences in ACC-related functional connectivity were assessed in psycho-physiological interaction (PPI) analyses. RESULTS: Left subgenual ACC activity was significantly higher in the quetiapine group compared to antipsychotic-free participants and dependent on high-dose quetiapine intake. Results remained significant after controlling for confounding variables. The PPI analysis did not yield significant group differences in ACC-related functional connectivity. LIMITATIONS: Causal interpretation is limited due to cross-sectional findings. CONCLUSION: Elevated subgenual ACC activity to rewarding stimuli may represent a neurobiological marker and potential key interface of quetiapine's antidepressant effects in MDD. These results underline ACC activity during reward processing as an investigative avenue for future research and therapeutic interventions to improve MDD treatment outcomes.


Subject(s)
Antipsychotic Agents , Depressive Disorder, Major , Humans , Antipsychotic Agents/adverse effects , Quetiapine Fumarate/therapeutic use , Gyrus Cinguli , Cross-Sectional Studies , Antidepressive Agents/therapeutic use , Antidepressive Agents/pharmacology , Reward , Magnetic Resonance Imaging
16.
Psychol Med ; 53(11): 4933-4942, 2023 08.
Article in English | MEDLINE | ID: mdl-36052484

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) has been associated with alterations in brain white matter (WM) microstructure. However, diffusion tensor imaging studies in biological relatives have presented contradicting results on WM alterations and their potential as biomarkers for vulnerability or resilience. To shed more light on associations between WM microstructure and resilience to familial risk, analyses including both healthy and depressed relatives of MDD patients are needed. METHODS: In a 2 (MDD v. healthy controls, HC) × 2 (familial risk yes v. no) design, we investigated fractional anisotropy (FA) via tract-based spatial statistics in a large well-characterised adult sample (N = 528), with additional controls for childhood maltreatment, a potentially confounding proxy for environmental risk. RESULTS: Analyses revealed a significant main effect of diagnosis on FA in the forceps minor and the left superior longitudinal fasciculus (ptfce-FWE = 0.009). Furthermore, a significant interaction of diagnosis with familial risk emerged (ptfce-FWE = 0.036) Post-hoc pairwise comparisons showed significantly higher FA, mainly in the forceps minor and right inferior fronto-occipital fasciculus, in HC with as compared to HC without familial risk (ptfce-FWE < 0.001), whereas familial risk played no role in MDD patients (ptfce-FWE = 0.797). Adding childhood maltreatment as a covariate, the interaction effect remained stable. CONCLUSIONS: We found widespread increased FA in HC with familial risk for MDD as compared to a HC low-risk sample. The significant effect of risk on FA was present only in HC, but not in the MDD sample. These alterations might reflect compensatory neural mechanisms in healthy adults at risk for MDD potentially associated with resilience.


Subject(s)
Depressive Disorder, Major , White Matter , Adult , Humans , Depressive Disorder, Major/diagnostic imaging , White Matter/diagnostic imaging , Brain/diagnostic imaging , Diffusion Tensor Imaging/methods , Depression , Genetic Predisposition to Disease , Anisotropy
17.
Psychol Assess ; 35(1): 12-22, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36355690

ABSTRACT

Retrospective self-reports of childhood maltreatment (CM) are widely used. However, their validity has been questioned due to potential depressive bias. Yet, investigations of this matter are sparse. Thus, we investigated to what extent retrospective maltreatment reports vary in relation to longitudinal changes in depressive symptomatology. Two-year temporal stability of maltreatment reports was assessed via the Childhood Trauma Questionnaire (CTQ). Diagnosis of major depressive disorder (MDD) and depressive symptoms were assessed using the Structured Clinical Interview for DSM-IV and the Beck Depression Inventory (BDI). We included a total of n = 419 healthy controls (HC), n = 347 MDD patients, and a subsample with an initial depressive episode between both assessments (n = 27), from two independent cohorts (Marburg-Münster-affective-disorders-cohort-study and Münster-Neuroimaging-cohort). Analysis plan and hypotheses were preregistered prior to data analysis. Dimensional CTQ scores were highly stable in HC and MDD across both cohorts (ICC = .956; 95% CI [.949, .963] and ICC = .950; 95% CI [.933, .963]) and temporal stability did not differ between groups. Stability was lower for cutoff-based binary CTQ scores (K = .551; 95% CI [.479, .622] and K = .507; 95% CI [.371, .640]). Baseline dimensional CTQ scores were associated with concurrent and future BDI scores. However, longitudinal changes in BDI scores predicted variability in dimensional CTQ scores only to a small extent across cohorts (b = 0.101, p = .009, R² = .021 and b = 0.292, p = .320), with the effect being driven by emotional maltreatment subscales. Findings suggest that the CTQ provides temporally stable self-reports of CM in healthy and depressed populations and is only marginally biased by depressive symptomatology. A dimensional rather than binary conceptualization of maltreatment is advised for improving psychometric quality. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Subject(s)
Child Abuse , Depressive Disorder, Major , Humans , Adult , Child , Retrospective Studies , Depressive Disorder, Major/diagnosis , Self Report , Cohort Studies , Surveys and Questionnaires , Child Abuse/diagnosis , Child Abuse/psychology
18.
Mol Psychiatry ; 27(11): 4550-4560, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36071108

ABSTRACT

Identifying brain alterations associated with suicidal thoughts and behaviors (STBs) in young people is critical to understanding their development and improving early intervention and prevention. The ENIGMA Suicidal Thoughts and Behaviours (ENIGMA-STB) consortium analyzed neuroimaging data harmonized across sites to examine brain morphology associated with STBs in youth. We performed analyses in three separate stages, in samples ranging from most to least homogeneous in terms of suicide assessment instrument and mental disorder. First, in a sample of 577 young people with mood disorders, in which STBs were assessed with the Columbia Suicide Severity Rating Scale (C-SSRS). Second, in a sample of young people with mood disorders, in which STB were assessed using different instruments, MRI metrics were compared among healthy controls without STBs (HC; N = 519), clinical controls with a mood disorder but without STBs (CC; N = 246) and young people with current suicidal ideation (N = 223). In separate analyses, MRI metrics were compared among HCs (N = 253), CCs (N = 217), and suicide attempters (N = 64). Third, in a larger transdiagnostic sample with various assessment instruments (HC = 606; CC = 419; Ideation = 289; HC = 253; CC = 432; Attempt=91). In the homogeneous C-SSRS sample, surface area of the frontal pole was lower in young people with mood disorders and a history of actual suicide attempts (N = 163) than those without a lifetime suicide attempt (N = 323; FDR-p = 0.035, Cohen's d = 0.34). No associations with suicidal ideation were found. When examining more heterogeneous samples, we did not observe significant associations. Lower frontal pole surface area may represent a vulnerability for a (non-interrupted and non-aborted) suicide attempt; however, more research is needed to understand the nature of its relationship to suicide risk.


Subject(s)
Suicidal Ideation , Suicide, Attempted , Adolescent , Humans , Brain , Neuroimaging/methods , Mood Disorders
19.
Transl Psychiatry ; 12(1): 349, 2022 08 27.
Article in English | MEDLINE | ID: mdl-36030219

ABSTRACT

Former prospective studies showed that the occurrence of relapse in Major Depressive Disorder (MDD) is associated with volume loss in the insula, hippocampus and dorsolateral prefrontal cortex (DLPFC). However, these studies were confounded by the patient's lifetime disease history, as the number of previous episodes predict future recurrence. In order to analyze neural correlates of recurrence irrespective of prior disease course, this study prospectively examined changes in brain structure in patients with first-episode depression (FED) over 2 years. N = 63 FED patients and n = 63 healthy controls (HC) underwent structural magnetic resonance imaging at baseline and after 2 years. According to their disease course during the follow-up interval, patients were grouped into n = 21 FED patients with recurrence (FEDrec) during follow-up and n = 42 FED patients with stable remission (FEDrem). Gray matter volume changes were analysed using group by time interaction analyses of covariance for the DLPFC, hippocampus and insula. Significant group by time interactions in the DLPFC and insula emerged. Pairwise comparisons showed that FEDrec had greater volume decline in the DLPFC and insula from baseline to follow-up compared with FEDrem and HC. No group by time interactions in the hippocampus were found. Cross-sectional analyses at baseline and follow-up revealed no differences between groups. This longitudinal study provides evidence for neural alterations in the DLPFC and insula related to a detrimental course in MDD. These effects of recurrence are already detectable at initial stages of MDD and seem to occur without any prior disease history, emphasizing the importance of early interventions preventing depressive recurrence.


Subject(s)
Depressive Disorder, Major , Brain , Cross-Sectional Studies , Disease Progression , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Prefrontal Cortex , Prospective Studies
20.
J Psychiatry Neurosci ; 47(4): E284-E292, 2022.
Article in English | MEDLINE | ID: mdl-35948341

ABSTRACT

BACKGROUND: Anhedonia is a key symptom of major depressive disorder (MDD). Anhedonia is associated with aberrant reward processing, but whether it might interfere similarly with the neural processing of aversive stimuli, such as monetary loss, remains unknown. We aimed to investigate potential associations between anhedonia and neural response during reward and loss processing in patients with MDD. METHODS: We investigated blood-oxygen-level-dependent response in the orbitofrontal cortex, cingulate cortex, insula and basal ganglia during monetary reward and loss processing in 182 patients with MDD, using a card-guessing paradigm. We measured anhedonia with the Social and Physical Anhedonia Scale (SASPAS), and we tested for the main and interaction effects of SASPAS scores and the experimental condition (reward or loss) in a full factorial model. RESULTS: We detected a negative main effect of anhedonia, as well as a significant interaction effect of anhedonia and the experimental condition, on orbitofrontal and insular neural response. Post hoc analyses revealed that the interaction was driven by a significant association between higher anhedonia scores and hypoactivation during loss processing. We observed no significant association between anhedonia and neural response during reward processing. LIMITATIONS: This study had a cross-sectional design. CONCLUSION: Our findings confirmed that altered neural processing in the orbitofrontal cortex and insula is a neurobiological feature of anhedonic symptomatology in people with MDD. The pronounced association between anhedonia and blunted neural response during loss processing supports a broader concept for the neurobiological basis of anhedonia. Hence, MDD with anhedonic features might be characterized by reduced neural response to external stimuli, potentially because of amotivation.


Subject(s)
Anhedonia , Depressive Disorder, Major , Anhedonia/physiology , Cross-Sectional Studies , Depressive Disorder, Major/diagnostic imaging , Humans , Magnetic Resonance Imaging , Reward
SELECTION OF CITATIONS
SEARCH DETAIL
...