Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Strahlenther Onkol ; 198(7): 622-629, 2022 07.
Article in English | MEDLINE | ID: mdl-35412045

ABSTRACT

PURPOSE: For patients treated with partial breast irradiation (PBI), potential long-term treatment-related toxicities are important. The 1.5 T magnetic resonance guided linear accelerator (MRL) offers excellent tumor bed visualization and a daily treatment plan adaption possibility, but MRL-specific electron stream and return effects may cause increased dose deposition at air-tissue interfaces. In this study, we aimed to investigate the projected risk of radiation-induced secondary malignancies (RISM) in patients treated with PBI at the 1.5 T MRL. METHODS: Projected excess absolute risk values (EARs) for the contralateral breast, lungs, thyroid and esophagus were estimated for 11 patients treated with PBI at the MRL and compared to 11 patients treated with PBI and 11 patients treated with whole breast irradiation (WBI) at the conventional linac (CTL). All patients received 40.05 Gy in 15 fractions. For patients treated at the CTL, additional dose due to daily cone beam computed tomography (CBCT) was simulated. The t­test with Bonferroni correction was used for comparison. RESULTS: The highest projected risk for a radiation-induced secondary cancer was found for the ipsilateral lung, without significant differences between the groups. A lower contralateral breast EAR was found for MRL-PBI (EAR = 0.89) compared to CTL-PBI (EAR = 1.41, p = 0.01), whereas a lower thyroid EAR for CTL-PBI (EAR = 0.17) compared to MRL-PBI (EAR = 0.33, p = 0.03) and CTL-WBI (EAR = 0.46, p = 0.002) was observed. Nevertheless, when adding the CBCT dose no difference between thyroid EAR for CTL-PBI compared to MRL-PBI was detected. CONCLUSION: Better breast tissue visualization and the possibility for daily plan adaption make PBI at the 1.5 T MRL particularly attractive. Our simulations suggest that this treatment can be performed without additional projected risk of RISM.


Subject(s)
Breast Neoplasms , Neoplasms, Second Primary , Breast/radiation effects , Breast Neoplasms/radiotherapy , Female , Humans , Lung/radiation effects , Magnetic Resonance Imaging , Neoplasms, Second Primary/epidemiology , Neoplasms, Second Primary/etiology , Particle Accelerators
2.
Clin Transl Radiat Oncol ; 27: 103-108, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33553697

ABSTRACT

INTRODUCTION: The hybrid magnetic resonance linear accelerator (MRL) has the potential to test novel concepts in breast cancer patients such as daily MR-guided real-time plan adaptation. Before starting clinical trials, preparatory studies for example of the MR-dependent electron stream effect (ESE) are necessary. MATERIAL AND METHODS: To prospectively investigate the ESE, data from 11 patients treated with partial breast irradiation (PBI) at the 1.5 T MRL were evaluated. A bolus was placed on the chin and in vivo dosimetry results were compared with the dose simulated by the treatment planning system (TPS). The same measurements were carried out for three patients treated at a conventional linac. Toxicity and cosmesis were evaluated. RESULTS: Median doses measured and simulated on top/ underneath the bolus were 1.91 / 0.62 Gy and 2.82 / 0.63 Gy, respectively. Median differences between calculations and measurements were 0.8 Gy and 0.1 Gy. At the conventional linac, median measured doses on top/ underneath the bolus were 0.98 and 1.37 Gy. No acute toxicity exceeding grade 2 was recorded. Cosmesis was good or excellent and patient reported outcome measures were mostly scored as none or mild. CONCLUSION: The dose due to the ESE is low, correctly predicted by the TPS and effectively minimized by a bolus.

3.
Med Phys ; 46(11): 5304-5313, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31532829

ABSTRACT

PURPOSE: To develop, implement, and validate a full 1.5 T/7 MV magnetic resonance (MR)-Linac accelerator head and cryostat model in EGSnrc for high precision dose calculations accounting for magnetic field effects that are independent from the vendor treatment planning system. METHODS: Primary electron beam parameters for the implemented model were adapted to be in accordance with measured dose profiles of the Elekta Unity (Elekta AB, Stockholm, Sweden). Parameters to be investigated were the mean electron energy as well as the Gaussian radial intensity and energy distributions. Energy tuning was done comparing depth dose profiles simulated with monoenergetic beams of varying energies to measurements. The optimum radial intensity distribution was found by varying the radial full width at half maximum (FWHM) and comparing simulated and measured lateral profiles. The influence of the energy distribution was investigated by comparing simulated lateral and depth dose profiles with varying energy spreads to measured data. Comparison of simulations and measurements was performed by calculating average and maximum local dose deviations. The model was validated recalculating a clinical intensity-modulated radiation therapy plan for the MR-Linac and comparing the resulting dose distribution with simulations from the commercial treatment planning system Monaco using the gamma criterion. RESULTS: Comparison of simulated and measured data showed that the optimum initial electron beam for MR-Linac simulations was monoenergetic with an electron energy of (7.4 ± 0.2) MeV. The optimum Gaussian radial intensity distribution has a FWHM of (2.2 ± 0.3) mm. The average relative deviations were smaller than 1% for all simulated profiles with optimum electron parameters, whereas the largest maximum deviation of 2.07% was found for the 22 × 22 cm 2 cross-plane profile. Profiles were insensitive to energy spread variations. The IMRT plan recalculated with the final MR-Linac model with optimized initial electron beam parameters showed a gamma pass rate of 99.83 % using a gamma criterion of 3%/3 mm. CONCLUSIONS: The EGSnrc MR-Linac model developed in this study showed good accordance with measurements and was successfully used to recalculate a first full clinical IMRT treatment plan. Thus, it shows the general possibility for future secondary dose calculations of full IMRT plans with EGSnrc, which needs further detailed investigations before clinical use.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Monte Carlo Method , Particle Accelerators , Radiation Dosage , Cold Temperature , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Image-Guided
4.
Phys Med Biol ; 52(23): 7167-81, 2007 Dec 07.
Article in English | MEDLINE | ID: mdl-18030000

ABSTRACT

For plane-parallel chambers used in electron dosimetry, modern dosimetry protocols recommend a cross-calibration against a calibrated cylindrical chamber. The rationale for this is the unacceptably large (up to 3-4%) chamber-to-chamber variations of the perturbation factors (pwall)Co, which have been reported for plane-parallel chambers of a given type. In some recent publications, it was shown that this is no longer the case for modern plane-parallel chambers. The aims of the present study are to obtain reliable information about the variation of the perturbation factors for modern types of plane-parallel chambers, and-if this variation is found to be acceptably small-to determine type-specific mean values for these perturbation factors which can be used for absorbed dose measurements in electron beams using plane-parallel chambers. In an extensive multi-center study, the individual perturbation factors pCo (which are usually assumed to be equal to (pwall)Co) for a total of 35 plane-parallel chambers of the Roos type, 15 chambers of the Markus type and 12 chambers of the Advanced Markus type were determined. From a total of 188 cross-calibration measurements, variations of the pCo values for different chambers of the same type of at most 1.0%, 0.9% and 0.6% were found for the chambers of the Roos, Markus and Advanced Markus types, respectively. The mean pCo values obtained from all measurements are [Formula: see text] and [Formula: see text]; the relative experimental standard deviation of the individual pCo values is less than 0.24% for all chamber types; the relative standard uncertainty of the mean pCo values is 1.1%.


Subject(s)
Cobalt Radioisotopes/analysis , Cobalt Radioisotopes/standards , Radiometry/instrumentation , Radiometry/standards , Calibration , Dose-Response Relationship, Radiation , Equipment Design , Equipment Failure Analysis , Europe , Radiation Dosage , Reference Standards , Reproducibility of Results , Sensitivity and Specificity
5.
Phys Med Biol ; 52(15): 4449-63, 2007 Aug 07.
Article in English | MEDLINE | ID: mdl-17634643

ABSTRACT

A dedicated, efficient Monte Carlo (MC) accelerator head model for intensity modulated stereotactic radiosurgery treatment planning is needed to afford a highly accurate simulation of tiny IMRT fields. A virtual source model (VSM) of a mini multi-leaf collimator (MLC) (the Elekta Beam Modulator (EBM)) is presented, allowing efficient generation of particles even for small fields. The VSM of the EBM is based on a previously published virtual photon energy fluence model (VEF) (Fippel et al 2003 Med. Phys. 30 301) commissioned with large field measurements in air and in water. The original commissioning procedure of the VEF, based on large field measurements only, leads to inaccuracies for small fields. In order to improve the VSM, it was necessary to change the VEF model by developing (1) a method to determine the primary photon source diameter, relevant for output factor calculations, (2) a model of the influence of the flattening filter on the secondary photon spectrum and (3) a more realistic primary photon spectrum. The VSM model is used to generate the source phase space data above the mini-MLC. Later the particles are transmitted through the mini-MLC by a passive filter function which significantly speeds up the time of generation of the phase space data after the mini-MLC, used for calculation of the dose distribution in the patient. The improved VSM model was commissioned for 6 and 15 MV beams. The results of MC simulation are in very good agreement with measurements. Less than 2% of local difference between the MC simulation and the diamond detector measurement of the output factors in water was achieved. The X, Y and Z profiles measured in water with an ion chamber (V = 0.125 cm(3)) and a diamond detector were used to validate the models. An overall agreement of 2%/2 mm for high dose regions and 3%/2 mm in low dose regions between measurement and MC simulation for field sizes from 0.8 x 0.8 cm(2) to 16 x 21 cm(2) was achieved. An IMRT plan film verification was performed for two cases: 6 MV head&neck and 15 MV prostate. The simulation is in agreement with film measurements within 2%/2 mm in the high dose regions (> or = 0.1 Gy = 5% D(max)) and 5%/2 mm in low dose regions (<0.1 Gy).


Subject(s)
Computer-Aided Design , Models, Statistical , Particle Accelerators/instrumentation , Photons/therapeutic use , Quality Assurance, Health Care/methods , Radiometry/methods , Radiotherapy, Conformal/instrumentation , Computer Simulation , Equipment Design , Equipment Failure , Monte Carlo Method , Radiotherapy Dosage , Radiotherapy, Conformal/methods , Systems Integration
6.
Phys Med Biol ; 49(10): 2029-39, 2004 May 21.
Article in English | MEDLINE | ID: mdl-15214539

ABSTRACT

Air density must be taken into account when ionization dosimetry is performed with unsealed ionization chambers. The German dosimetry protocol DIN 6800-2 states an air density correction factor for which current barometric pressure and temperature and their reference values must be known. It also states that differences between air density and the attendant reference value, as well as changes in ionization chamber sensitivity, can be determined using a radioactive check source. Both methods have advantages and drawbacks which the paper discusses in detail. Barometric pressure at a given height above sea level can be determined by using a suitable barometer, or data downloaded from airport or weather service internet sites. The main focus of the paper is to show how barometric data from measurement or from the internet are correctly processed. Therefore the paper also provides all the requisite equations and terminological explanations. Computed and measured barometric pressure readings are compared, and long-term experience with air density correction factors obtained using both methods is described.


Subject(s)
Ions , Radiometry/methods , Air , Algorithms , Altitude , Atmospheric Pressure , Humidity , Internet , Radiation Dosage , Software , Temperature
7.
Phys Med Biol ; 47(11): N133-43, 2002 Jun 07.
Article in English | MEDLINE | ID: mdl-12108781

ABSTRACT

The purpose of this study was to investigate beam output factors (OFs) for conformal radiation therapy and to compare the OFs measured with different detectors with those simulated with Monte Carlo methods. Four different detectors (diode, diamond, pinpoint and ionization chamber) were used to measure photon beam OFs in a water phantom at a depth of 10 cm with a source-surface distance (SSD) of 100 cm. Square fields with widths ranging from 1 cm to 15 cm were observed; the OF for the different field sizes was normalized to that measured at a 5 cm x 5 cm field size at a depth of 10 cm. The BEAM/EGS4 program was used to simulate the exact geometry of a 6 MV photon beam generated by the linear accelerator, and the DOSXYZ-code was implemented to calculate the OFs for all field sizes. Two resolutions (0.1 cm and 0.5 cm voxel size) were chosen here. In addition, to model the detector four kinds of material, water, air, graphite or silicon, were placed in the corresponding voxels. Profiles and depth dose distributions resulting from the simulation show good agreement with the measurements. Deviations of less than 2% can be observed. The OF measured with different detectors in water vary by more than 35% for 1 cm x 1 cm fields. This result can also be found for the simulated OF with different voxel sizes and materials. For field sizes of at least 2 cm x 2 cm the deviations between all measurements and simulations are below 3%. This demonstrates that very small fields have a bad effect on dosimetric accuracy and precision. Finally, Monte Carlo methods can be significant in determining the OF for small fields.


Subject(s)
Photons , Radiotherapy, Conformal/methods , Humans , Monte Carlo Method , Particle Accelerators , Phantoms, Imaging , Radiometry/methods , Water
8.
Med Phys ; 28(11): 2258-64, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11764030

ABSTRACT

The dosimetry protocols DIN 6800-2 and AAPM TG-51, both based on the absorbed dose to water concept, are compared in their theoretical background and in their application to electron dosimetry. The agreement and disagreement in correction factors and energy parameters used in both protocols will be shown and discussed. Measurements with three different types of ionization chambers were performed and evaluated according to both protocols. As a result the perturbation correction factor P(60Co)wall for the Roos chamber was determined to 1.024 +/- 0.5%.


Subject(s)
Electrons , Radiometry/methods , Radiometry/standards , Algorithms , Calibration , Ions , Monte Carlo Method , Temperature , Water/chemistry
9.
Northwest Dent ; 78(4): 9, 56, 1999.
Article in English | MEDLINE | ID: mdl-11819904
SELECTION OF CITATIONS
SEARCH DETAIL
...