Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 23(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36361762

ABSTRACT

Polyamines are essential biogenic poly-cations with important roles in many cellular processes and diseases such as cancer. A rate-limiting step early in the biosynthesis of polyamines is the conversion of ornithine to putrescine by the homodimeric enzyme ornithine decarboxylase (ODC). In a conserved mechanism of posttranslational regulation, ODC antizyme (OAZ) binds to ODC monomers promoting their ubiquitin-independent degradation by the proteasome. Decoding of OAZ mRNA is unusual in that it involves polyamine-regulated bypassing of an internal translation termination (STOP) codon by a ribosomal frameshift (RFS) event. Using Saccharomyces cerevisiae, we earlier showed that high polyamine concentrations lead to increased efficiency of OAZ1 mRNA translation by binding to nascent Oaz1 polypeptide. The binding of polyamines prevents stalling of the ribosomes on OAZ1 mRNA caused by nascent Oaz1 polypeptide thereby promoting synthesis of full-length Oaz1. Polyamine depletion, however, also inhibits RFS during the decoding of constructs bearing the OAZ1 shift site lacking sequences encoding the Oaz1 parts implicated in polyamine binding. Polyamine depletion is known to impair hypusine modification of translation factor eIF5A. Using a novel set of conditional mutants impaired in the function of eIF5A/Hyp2 or its hypusination, we show here that hypusinated eIF5A is required for efficient translation across the OAZ1 RFS site. These findings identify eIF5A as a part of Oaz1 regulation, and thereby of polyamine synthesis. Additional experiments with DFMO, however, show that depletion of polyamines inhibits translation across the OAZ1 RFS site not only by reducing Hyp2 hypusination, but in addition, and even earlier, by affecting RFS more directly.


Subject(s)
Frameshifting, Ribosomal , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ornithine Decarboxylase/genetics , Ornithine Decarboxylase/metabolism , Polyamines/metabolism
2.
Biomolecules ; 12(2)2022 02 04.
Article in English | MEDLINE | ID: mdl-35204754

ABSTRACT

Biogenesis of the eukaryotic 20S proteasome core particle (PC) is a complex process assisted by specific chaperones absent from the active complex. The first identified chaperone, Ump1, was found in a precursor complex (PC) called 15S PC. Yeast cells lacking Ump1 display strong defects in the autocatalytic processing of ß subunits, and consequently have lower proteolytic activity. Here, we dissect an important interaction of Ump1 with the ß7 subunit that is critical for proteasome biogenesis. Functional domains of Ump1 and the interacting proteasome subunit ß7 were mapped, and the functional consequences of their deletion or mutation were analyzed. Cells in which the first sixteen Ump1 residues were deleted display growth phenotypes similar to ump1∆, but massively accumulate 15S PC and distinct proteasome intermediate complexes containing the truncated protein. The viability of these cells depends on the transcription factor Rpn4. Remarkably, ß7 subunit overexpression re-established viability in the absence of Rpn4. We show that an N-terminal domain of Ump1 and the propeptide of ß7 promote direct interaction of the two polypeptides in vitro. This interaction is of critical importance for the recruitment of ß7 precursor during proteasome assembly, a step that drives dimerization of 15S PCs and the formation of 20S CPs.


Subject(s)
Molecular Chaperones/metabolism , Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Dimerization , Mutation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
3.
Biomolecules ; 13(1)2022 12 21.
Article in English | MEDLINE | ID: mdl-36671396

ABSTRACT

Whereas assembly of the 20S proteasome core particle (CP) in prokaryotes apparently occurs spontaneously, the efficiency of this process in eukaryotes relies on the dedicated assembly chaperones Ump1, Pba1-Pba2, and Pba3-Pba4. For mammals, it was reported that CP assembly initiates with formation of a complete α-ring that functions as a template for ß subunit incorporation. By contrast, we were not able to detect a ring composed only of a complete set of α subunits in S. cerevisiae. Instead, we found that the CP subunits α1, α2, and α4 each form independent small complexes. Purification of such complexes containing α4 revealed the presence of chaperones of the Hsp70/Ssa and Hsp110/Sse families. Consistently, certain small complexes containing α1, α2, and α4 were not formed in strains lacking these chaperones. Deletion of the SSE1 gene in combination with deletions of PRE9 (α3), PBA3, or UMP1 genes resulted in severe synthetic growth defects, high levels of ubiquitin-conjugates, and an accumulation of distinct small complexes with α subunits. Our study shows that Hsp70 and Hsp110 chaperones cooperate to promote the folding of individual α subunits and/or their assembly with other CP subunits, Ump1, and Pba1-Pba4 in subsequent steps.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Humans , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism
5.
FEBS Lett ; 595(15): 2015-2033, 2021 08.
Article in English | MEDLINE | ID: mdl-34109626

ABSTRACT

Decoding of OAZ1 (Ornithine decarboxylase AntiZyme 1) mRNA, which harbours two open reading frames (ORF1 and ORF2) interrupted by a naturally occurring Premature Termination Codon (PTC), produces an 8 kDa truncated polypeptide termed Orf1p, unless the PTC is bypassed by +1 ribosomal frameshifting. In this study, we identified Orf1p as an endogenous ubiquitin-dependent substrate of the 26S proteasome both in yeast and mammalian cells. Surprisingly, we found that the ribosome-associated quality control factor Rqc1 and the ubiquitin ligase Ltn1 are critical for Orf1p degradation. In addition, the cytosolic protein quality control chaperone system Hsp70/Hsp90 and their corresponding co-chaperones Sse1, Fes1, Sti1 and Cpr7 are also required for Orf1p proteolysis. Our study finds that Orf1p, which is naturally synthesized as a result of a premature translation termination event, requires the coordinated role of both ribosome-associated and cytosolic protein quality control factors for its degradation.


Subject(s)
Peptide Chain Termination, Translational , Proteins/genetics , Ribosomes/metabolism , Animals , Codon, Terminator , Mice , Open Reading Frames , Quality Control , Saccharomyces cerevisiae/genetics
6.
Life Sci Alliance ; 3(1)2020 01.
Article in English | MEDLINE | ID: mdl-31857350

ABSTRACT

Mitochondria are essential organelles whose function is upheld by their dynamic nature. This plasticity is mediated by large dynamin-related GTPases, called mitofusins in the case of fusion between two mitochondrial outer membranes. Fusion requires ubiquitylation, attached to K398 in the yeast mitofusin Fzo1, occurring in atypical and conserved forms. Here, modelling located ubiquitylation to α4 of the GTPase domain, a critical helix in Ras-mediated events. Structure-driven analysis revealed a dual role of K398. First, it is required for GTP-dependent dynamic changes of α4. Indeed, mutations designed to restore the conformational switch, in the absence of K398, rescued wild-type-like ubiquitylation on Fzo1 and allowed fusion. Second, K398 is needed for Fzo1 recognition by the pro-fusion factors Cdc48 and Ubp2. Finally, the atypical ubiquitylation pattern is stringently required bilaterally on both involved mitochondria. In contrast, exchange of the conserved pattern with conventional ubiquitin chains was not sufficient for fusion. In sum, α4 lysines from both small and large GTPases could generally have an electrostatic function for membrane interaction, followed by posttranslational modifications, thus driving membrane fusion events.


Subject(s)
GTP Phosphohydrolases/chemistry , GTP Phosphohydrolases/metabolism , Membrane Fusion/genetics , Membrane Proteins/metabolism , Mitochondrial Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Ubiquitination/genetics , GTP Phosphohydrolases/genetics , Membrane Proteins/genetics , Mitochondria/metabolism , Mitochondrial Dynamics/genetics , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/genetics , Mutant Proteins/metabolism , Plasmids/genetics , Protein Conformation, alpha-Helical , Protein Domains , Protein Processing, Post-Translational/genetics , Saccharomyces cerevisiae Proteins/genetics , Ubiquitin/metabolism
7.
Nat Commun ; 10(1): 3678, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31417085

ABSTRACT

Modification with SUMO regulates many eukaryotic proteins. Down-regulation of sumoylated forms of proteins involves either their desumoylation, and hence recycling of the unmodified form, or their proteolytic targeting by ubiquitin ligases that recognize their SUMO modification (termed STUbL or ULS). STUbL enzymes such as Uls1 and Slx5-Slx8 in budding yeast or RNF4 and Arkadia/RNF111 in humans bear multiple SUMO interaction motifs to recognize substrates carrying poly-SUMO chains. Using yeast as experimental system and isothermal titration calorimetry, we here show that Arkadia specifically selects substrates carrying SUMO1-capped SUMO2/3 hybrid conjugates and targets them for proteasomal degradation. Our data suggest that a SUMO1-specific binding site in Arkadia with sequence similarity to a SUMO1-binding site in DPP9 is required for targeting endogenous hybrid SUMO conjugates and PML nuclear bodies in human cells. We thus characterize Arkadia as a STUbL with a preference for substrate proteins marked with distinct hybrid SUMO chains.


Subject(s)
Nuclear Proteins/metabolism , Sumoylation , Ubiquitin-Protein Ligases/metabolism , Escherichia coli , HeLa Cells , Humans , Proteasome Endopeptidase Complex/metabolism , Proteolysis , SUMO-1 Protein/metabolism , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Ubiquitination , Ubiquitins/metabolism
8.
Methods Enzymol ; 618: 187-210, 2019.
Article in English | MEDLINE | ID: mdl-30850052

ABSTRACT

Covalent modification of proteins with the small ubiquitin-related modifier (SUMO) is found in all eukaryotes and is involved in many important processes. SUMO attachment may change interaction properties, subcellular localization, or stability of a modified protein. Usually, only a small fraction of a protein is modified at a given time because sumoylation is a highly dynamic process. The sumoylated state of a protein is controlled by the activity of the sumoylation enzymes that promote either their mono- or poly-sumoylation (SUMO chain formation), by SUMO proteases that reverse these modifications, and by SUMO-targeted ubiquitin ligases (STUbL, ULS) that mediate their degradation by the proteasome. While some organisms, such as humans, express multiple isoforms, budding yeast SUMO is encoded by a single and essential gene termed SMT3. The analysis of the simpler SUMO system in budding yeast has been instrumental in the identification of enzymes acting on this modification and controlling its dynamics. Sumoylation of proteins changes dramatically during the cell division cycle and under various stress conditions. Here we summarize various approaches that employ Saccharomyces cerevisiae as a model system to study the dynamics of sumoylation and how it is controlled.


Subject(s)
Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Blotting, Western/methods , Electrophoresis, Polyacrylamide Gel/methods , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Sumoylation , Ubiquitin/metabolism
9.
Methods Mol Biol ; 1475: 123-35, 2016.
Article in English | MEDLINE | ID: mdl-27631802

ABSTRACT

SUMO-specific proteases, known as Ulps in baker's yeast and SENPs in humans, have important roles in controlling the dynamics of SUMO-modified proteins. They display distinct modes of action and specificity, in that they may act on the SUMO precursor, mono-sumoylated, and/or polysumoylated proteins, and they might be specific for substrates with certain SUMO paralogs. SUMO chains may be dismantled either by endo or exo mechanisms. Biochemical characterization of a protease usually requires purification of the protein of interest. Developing a purification protocol, however, can be very difficult, and in some cases, isolation of a protease in its pure form may go along with a substantial loss of activity. To characterize the reaction mechanism of Ulps, we have developed an in vitro assay, which makes use of substrates endowed with artificial poly-SUMO chains of defined lengths, and S. cerevisiae Ulp enzymes in crude extract from E. coli. This fast and economic approach should be applicable to SUMO-specific proteases from other species as well.


Subject(s)
Endopeptidases/metabolism , Protein Processing, Post-Translational , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Cloning, Molecular , Endopeptidases/genetics , Enzyme Assays , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Histidine/genetics , Histidine/metabolism , Hydrolysis , Maltose-Binding Proteins/genetics , Maltose-Binding Proteins/metabolism , Oligopeptides/genetics , Oligopeptides/metabolism , Recombinant Fusion Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Small Ubiquitin-Related Modifier Proteins/genetics , Substrate Specificity , Sumoylation
10.
Nat Commun ; 7: 12202, 2016 07 22.
Article in English | MEDLINE | ID: mdl-27447739

ABSTRACT

Phenotypes on-demand generated by controlling activation and accumulation of proteins of interest are invaluable tools to analyse and engineer biological processes. While temperature-sensitive alleles are frequently used as conditional mutants in microorganisms, they are usually difficult to identify in multicellular species. Here we present a versatile and transferable, genetically stable system based on a low-temperature-controlled N-terminal degradation signal (lt-degron) that allows reversible and switch-like tuning of protein levels under physiological conditions in vivo. Thereby, developmental effects can be triggered and phenotypes on demand generated. The lt-degron was established to produce conditional and cell-type-specific phenotypes and is generally applicable in a wide range of organisms, from eukaryotic microorganisms to plants and poikilothermic animals. We have successfully applied this system to control the abundance and function of transcription factors and different enzymes by tunable protein accumulation.


Subject(s)
Arabidopsis/metabolism , Drosophila/metabolism , Nicotiana/metabolism , Proteolysis , Saccharomyces cerevisiae/metabolism , Animals , Arabidopsis/classification , Arabidopsis/genetics , Cells, Cultured , Drosophila/classification , Drosophila/genetics , Phenotype , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/genetics , Species Specificity , Temperature , Nicotiana/classification , Nicotiana/genetics
12.
J Biol Chem ; 290(19): 12268-81, 2015 May 08.
Article in English | MEDLINE | ID: mdl-25833950

ABSTRACT

Sumoylation is a post-translational modification essential in most eukaryotes that regulates stability, localization, activity, or interaction of a multitude of proteins. It is a reversible process wherein counteracting ligases and proteases, respectively, mediate the conjugation and deconjugation of SUMO molecules to/from target proteins. Apart from attachment of single SUMO moieties to targets, formation of poly-SUMO chains occurs by the attachment of additional SUMO molecules to lysine residues in the N-terminal extensions of SUMO. In Saccharomyces cerevisiae there are apparently only two SUMO(Smt3)-specific proteases: Ulp1 and Ulp2. Ulp2 has been shown to be important for the control of poly-SUMO conjugates in cells and to dismantle SUMO chains in vitro, but the mechanism by which it acts remains to be elucidated. Applying an in vitro approach, we found that Ulp2 acts sequentially rather than stochastically, processing substrate-linked poly-SUMO chains from their distal ends down to two linked SUMO moieties. Furthermore, three linked SUMO units turned out to be the minimum length of a substrate-linked chain required for efficient binding to and processing by Ulp2. Our data suggest that Ulp2 disassembles SUMO chains by removing one SUMO moiety at a time from their ends (exo mechanism). Apparently, Ulp2 recognizes surfaces at or near the N terminus of the distal SUMO moiety, as attachments to this end significantly reduce cleavage efficiency. Our studies suggest that Ulp2 controls the dynamic range of SUMO chain lengths by trimming them from the distal ends.


Subject(s)
Endopeptidases/metabolism , Gene Expression Regulation, Fungal , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism , Cloning, Molecular , Escherichia coli/metabolism , Green Fluorescent Proteins/metabolism , Open Reading Frames , Plasmids/metabolism , Protein Binding , Protein Folding , Protein Processing, Post-Translational , Protein Structure, Tertiary , Saccharomyces cerevisiae/metabolism
13.
Nat Commun ; 6: 6123, 2015 Jan 22.
Article in English | MEDLINE | ID: mdl-25609009

ABSTRACT

The chaperones Ump1 and Pba1-Pba2 promote efficient biogenesis of 20S proteasome core particles from its subunits via 15S intermediates containing alpha and beta subunits, except beta7. Here we elucidate the structural role of these chaperones in late steps of core particle biogenesis using biochemical, electron microscopy, cross-linking and mass spectrometry analyses. In 15S precursor complexes, Ump1 is largely unstructured, lining the inner cavity of the complex along the interface between alpha and beta subunits. The alpha and beta subunits form loosely packed rings with a wider alpha ring opening than in the 20S core particle, allowing for the Pba1-Pba2 heterodimer to be partially embedded in the central alpha ring cavity. During biogenesis, the heterodimer is expelled from the alpha ring by a restructuring event that organizes the beta ring and leads to tightening of the alpha ring opening. In this way, the Pba1-Pba2 chaperone is recycled for a new round of proteasome assembly.


Subject(s)
Molecular Chaperones/metabolism , Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Cross-Linking Reagents/chemistry , Dimerization , Mass Spectrometry , Microscopy, Electron , Proteasome Endopeptidase Complex/chemistry , Protein Binding , Protein Conformation , Protein Structure, Secondary , Protein Structure, Tertiary , Protein Subunits/metabolism , Saccharomyces cerevisiae/metabolism
15.
Biochim Biophys Acta ; 1843(1): 75-85, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24018209

ABSTRACT

Covalent posttranslational modification with SUMO (small ubiquitin-related modifier) modulates functions of a wide range of proteins in eukaryotic cells. Sumoylation affects the activity, interaction properties, subcellular localization and the stability of its substrate proteins. The recent discovery of a novel class of ubiquitin ligases (E3), termed ULS (E3-S) or STUbL, that recognize sumoylated proteins, links SUMO modification to the ubiquitin/proteasome system. Here we review recent insights into the properties and function of these ligases and their roles in regulating sumoylated proteins. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.


Subject(s)
SUMO-1 Protein/metabolism , Sumoylation , Ubiquitin-Protein Ligases/metabolism , Animals , DNA Damage/physiology , DNA Repair/physiology , Genomic Instability/physiology , Humans , Proteolysis , Saccharomyces cerevisiae/enzymology , Schizosaccharomyces/enzymology , Yeasts/enzymology
16.
Biochem J ; 457(1): 207-14, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24151981

ABSTRACT

RNF4 (RING finger protein 4) is a STUbL [SUMO (small ubiquitin-related modifier)-targeted ubiquitin ligase] controlling PML (promyelocytic leukaemia) nuclear bodies, DNA double strand break repair and other nuclear functions. In the present paper, we describe that the sequence and spacing of the SIMs (SUMO-interaction motifs) in RNF4 regulate the avidity-driven recognition of substrate proteins carrying SUMO chains of variable length.


Subject(s)
Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Protein Interaction Domains and Motifs , SUMO-1 Protein/metabolism , Sumoylation/physiology , Transcription Factors/chemistry , Transcription Factors/metabolism , Amino Acid Sequence , Binding Sites , HeLa Cells , Humans , Molecular Sequence Data , Protein Binding/physiology , Protein Interaction Domains and Motifs/physiology , Saccharomyces cerevisiae , Substrate Specificity
17.
J Biol Chem ; 288(47): 33682-33696, 2013 Nov 22.
Article in English | MEDLINE | ID: mdl-24121501

ABSTRACT

Regulated protein degradation mediated by the ubiquitin-proteasome system (UPS) is critical to eukaryotic protein homeostasis. Often vital to degradation of protein substrates is their disassembly, unfolding, or extraction from membranes. These processes are catalyzed by the conserved AAA-ATPase Cdc48 (also known as p97). Here we characterize the Cuz1 protein (Cdc48-associated UBL/zinc finger protein-1), encoded by a previously uncharacterized arsenite-inducible gene in budding yeast. Cuz1, like its human ortholog ZFAND1, has both an AN1-type zinc finger (Zf_AN1) and a divergent ubiquitin-like domain (UBL). We show that Cuz1 modulates Cdc48 function in the UPS. The two proteins directly interact, and the Cuz1 UBL, but not Zf_AN1, is necessary for binding to the Cdc48 N-terminal domain. Cuz1 also associates, albeit more weakly, with the proteasome, and the UBL is dispensable for this interaction. Cuz1-proteasome interaction is strongly enhanced by exposure of cells to the environmental toxin arsenite, and in a proteasome mutant, loss of Cuz1 enhances arsenite sensitivity. Whereas loss of Cuz1 alone causes only minor UPS degradation defects, its combination with mutations in the Cdc48(Npl4-Ufd1) complex leads to much greater impairment. Cuz1 helps limit the accumulation of ubiquitin conjugates on both the proteasome and Cdc48, suggesting a possible role in the transfer of ubiquitylated substrates from Cdc48 to the proteasome or in their release from these complexes.


Subject(s)
Adenosine Triphosphatases/metabolism , Cell Cycle Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Saccharomyces cerevisiae/metabolism , Ubiquitin/metabolism , Zinc Fingers , Adenosine Triphosphatases/genetics , Cell Cycle Proteins/genetics , Humans , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Nucleocytoplasmic Transport Proteins/genetics , Nucleocytoplasmic Transport Proteins/metabolism , Proteasome Endopeptidase Complex/genetics , Protein Structure, Tertiary , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin/genetics , Valosin Containing Protein , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
18.
Proc Natl Acad Sci U S A ; 110(15): 5975-80, 2013 Apr 09.
Article in English | MEDLINE | ID: mdl-23530227

ABSTRACT

Protein quality control systems protect cells against the accumulation of toxic misfolded proteins by promoting their selective degradation. Malfunctions of quality control systems are linked to aging and neurodegenerative disease. Folding of polypeptides is facilitated by the association of 70 kDa Heat shock protein (Hsp70) molecular chaperones. If folding cannot be achieved, Hsp70 interacts with ubiquitylation enzymes that promote the proteasomal degradation of the misfolded protein. However, the factors that direct Hsp70 substrates toward the degradation machinery have remained unknown. Here, we identify Fes1, an Hsp70 nucleotide exchange factor of hitherto unclear physiological function, as a cytosolic triaging factor that promotes proteasomal degradation of misfolded proteins. Fes1 selectively interacts with misfolded proteins bound by Hsp70 and triggers their release from the chaperone. In the absence of Fes1, misfolded proteins fail to undergo polyubiquitylation, aggregate, and induce a strong heat shock response. Our findings reveal that Hsp70 direct proteins toward either folding or degradation by using distinct nucleotide exchange factors.


Subject(s)
HSP110 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Protein Folding , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin/metabolism , Cytosol/metabolism , Mass Spectrometry , Plasmids/metabolism , Promoter Regions, Genetic , Proteasome Endopeptidase Complex/metabolism , Protein Denaturation , Quality Control , Saccharomyces cerevisiae/metabolism , Two-Hybrid System Techniques , Ubiquitin-Protein Ligases/metabolism , Ultracentrifugation
19.
Comput Struct Biotechnol J ; 7: e201304006, 2013.
Article in English | MEDLINE | ID: mdl-24688736

ABSTRACT

Protein degradation is essential for maintaining cellular homeostasis. The proteasome is the central enzyme responsible for non-lysosomal protein degradation in eukaryotic cells. Although proteasome assembly is not yet completely understood, a number of cofactors required for proper assembly and maturation have been identified. Ump is a short-lived maturation factor required for the efficient biogenesis of the 20S proteasome. Upon the association of the two precursor complexes, Ump is encased and is rapidly degraded after the proteolytic sites in the interior of the nascent proteasome are activated. In order to further understand the mechanisms behind proteasomal maturation, we expressed and purified yeast Ump in E. coli for biophysical and structural analysis. We show that recombinant Ump is purified as a mixture of different oligomeric species and that oligomerization is mediated by intermolecular disulfide bond formation involving the only cysteine residue present in the protein. Furthermore, a combination of bioinformatic, biochemical and structural analysis revealed that Ump shows characteristics of an intrinsically disordered protein, which might become structured only upon interaction with the proteasome subunits.

20.
Methods Mol Biol ; 832: 81-92, 2012.
Article in English | MEDLINE | ID: mdl-22350877

ABSTRACT

Posttranslational modification of proteins with the small ubiquitin-related modifier (SUMO) has been implicated in many important physiological functions, including the regulation of transcription and DNA repair. In most cases, only a small fraction of the total cellular amounts of a given protein is sumoylated at a certain point in time. Sensitive detection of sumoylated forms of proteins by western blotting is, therefore, an important step in the identification and/or characterization of a protein control by sumoylation. Polysumoylated proteins are recognized and targeted to the proteasome by specific ubiquitin ligases bearing SUMO interaction motifs. Sumoylation itself is reversible by the action of desumoylating enzymes. Their activities cause a rapid loss of SUMO conjugates in most standard cell extracts. To preserve SUMO-protein conjugates, therefore, a preparation of extracts under denaturing conditions is recommended. Here, we describe the application of an alkaline lysis procedure and a western blot protocol for the analysis of SUMO conjugates in yeast and human cells. In addition, we describe the application of another extraction procedure combined with immobilized metal affinity chromatography for the analysis of ubiquitin-SUMO hybrid conjugates from yeast and human cells.


Subject(s)
Small Ubiquitin-Related Modifier Proteins/analysis , Small Ubiquitin-Related Modifier Proteins/metabolism , Ubiquitin/analysis , Ubiquitin/metabolism , Blotting, Western/methods , Chromatography, Affinity/methods , Humans , Saccharomyces cerevisiae , Small Ubiquitin-Related Modifier Proteins/chemistry , Sumoylation , Ubiquitin/chemistry , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...