Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(20): 13962-13973, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38727611

ABSTRACT

Dimeric complexes composed of d8 square planar metal centers and rigid bridging ligands provide model systems to understand the interplay between attractive dispersion forces and steric strain in order to assist the development of reliable methods to model metal dimer complexes more broadly. [Ir2 (dimen)4]2+ (dimen = para-diisocyanomenthane) presents a unique case study for such phenomena, as distortions of the optimal structure of a ligand with limited conformational flexibility counteract the attractive dispersive forces from the metal and ligand to yield a complex with two ground state deformational isomers. Here, we use ultrafast X-ray solution scattering (XSS) and optical transient absorption spectroscopy (OTAS) to reveal the nature of the equilibrium distribution and the exchange rate between the deformational isomers. The two ground state isomers have spectrally distinct electronic excitations that enable the selective excitation of one isomer or the other using a femtosecond duration pulse of visible light. We then track the dynamics of the nonequilibrium depletion of the electronic ground state population─often termed the ground state hole─with ultrafast XSS and OTAS, revealing a restoration of the ground state equilibrium in 2.3 ps. This combined experimental and theoretical study provides a critical test of various density functional approximations in the description of bridged d8-d8 metal complexes. The results show that density functional theory calculations can reproduce the primary experimental observations if dispersion interactions are added, and a hybrid functional, which includes exact exchange, is used.

2.
J Chem Phys ; 160(9)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38450733

ABSTRACT

We review the GPAW open-source Python package for electronic structure calculations. GPAW is based on the projector-augmented wave method and can solve the self-consistent density functional theory (DFT) equations using three different wave-function representations, namely real-space grids, plane waves, and numerical atomic orbitals. The three representations are complementary and mutually independent and can be connected by transformations via the real-space grid. This multi-basis feature renders GPAW highly versatile and unique among similar codes. By virtue of its modular structure, the GPAW code constitutes an ideal platform for the implementation of new features and methodologies. Moreover, it is well integrated with the Atomic Simulation Environment (ASE), providing a flexible and dynamic user interface. In addition to ground-state DFT calculations, GPAW supports many-body GW band structures, optical excitations from the Bethe-Salpeter Equation, variational calculations of excited states in molecules and solids via direct optimization, and real-time propagation of the Kohn-Sham equations within time-dependent DFT. A range of more advanced methods to describe magnetic excitations and non-collinear magnetism in solids are also now available. In addition, GPAW can calculate non-linear optical tensors of solids, charged crystal point defects, and much more. Recently, support for graphics processing unit (GPU) acceleration has been achieved with minor modifications to the GPAW code thanks to the CuPy library. We end the review with an outlook, describing some future plans for GPAW.

3.
Phys Chem Chem Phys ; 25(35): 23417-23434, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37486006

ABSTRACT

We apply ultrashort X-ray laser pulses to track optically excited structural dynamics of [Ir2(dimen)4]2+ molecules in solution. In our exploratory study we determine angular correlations in the scattered X-rays, which comprise a complex fingerprint of the ultrafast dynamics. Model-assisted analysis of the experimental correlation data allows us to elucidate various aspects of the photoinduced changes in the excited molecular ensembles. We unambiguously identify that in our experiment the photoinduced transition dipole moments in [Ir2(dimen)4]2+ molecules are oriented perpendicular to the Ir-Ir bond. The analysis also shows that the ground state conformer of [Ir2(dimen)4]2+ with a larger Ir-Ir distance is mostly responsible for the formation of the excited state. We also reveal that the ensemble of solute molecules can be characterized with a substantial structural heterogeneity due to solvent influence. The proposed X-ray correlation approach offers an alternative path for studies of ultrafast structural dynamics of molecular ensembles in the liquid and gas phases.

4.
J Am Chem Soc ; 145(29): 15754-15765, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37163700

ABSTRACT

Resolving the structural dynamics of bond breaking, bond formation, and solvation is required for a deeper understanding of solution-phase chemical reactions. In this work, we investigate the photodissociation of triiodide in four solvents using femtosecond time-resolved X-ray solution scattering following 400 nm photoexcitation. Structural analysis of the scattering data resolves the solvent-dependent structural evolution during the bond cleavage, internal rearrangements, solvent-cage escape, and bond reformation in real time. The nature and structure of the reaction intermediates during the recombination are determined, elucidating the full mechanism of photodissociation and recombination on ultrafast time scales. We resolve the structure of the precursor state for recombination as a geminate pair. Further, we determine the size of the solvent cages from the refined structures of the radical pair. The observed structural dynamics present a comprehensive picture of the solvent influence on structure and dynamics of dissociation reactions.

6.
Chem Sci ; 14(10): 2572-2584, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36908966

ABSTRACT

Photochemical reactions in solution are governed by a complex interplay between transient intramolecular electronic and nuclear structural changes and accompanying solvent rearrangements. State-of-the-art time-resolved X-ray solution scattering has emerged in the last decade as a powerful technique to observe solute and solvent motions in real time. However, disentangling solute and solvent dynamics and how they mutually influence each other remains challenging. Here, we simultaneously measure femtosecond X-ray emission and scattering to track both the intramolecular and solvation structural dynamics following photoexcitation of a solvated copper photosensitizer. Quantitative analysis assisted by molecular dynamics simulations reveals a two-step ligand flattening strongly coupled to the solvent reorganization, which conventional optical methods could not discern. First, a ballistic flattening triggers coherent motions of surrounding acetonitrile molecules. In turn, the approach of acetonitrile molecules to the copper atom mediates the decay of intramolecular coherent vibrations and induces a further ligand flattening. These direct structural insights reveal that photoinduced solute and solvent motions can be intimately intertwined, explaining how the key initial steps of light harvesting are affected by the solvent on the atomic time and length scale. Ultimately, this work takes a step forward in understanding the microscopic mechanisms of the bidirectional influence between transient solvent reorganization and photoinduced solute structural dynamics.

7.
Chem Commun (Camb) ; 59(5): 563-566, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36537010

ABSTRACT

We report bistable indole-containing hemithioindigos (HTIs) with one-way quantitative photoswitching properties. Supported by state-averaged CASPT2/CASSCF calculations, we propose a mechanism for the observed one-way photoswitching that involves an isomer-specific excited state intramolecular proton transfer (ESIPT). Additionally, we developed a thermally bistable oligomer-inspired bipyrrole-containing HTI, which displays large band separation and bidirectional near-quantitative photoisomerization in the near-infrared, bio-optical window.

8.
J Chem Phys ; 157(22): 224201, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36546808

ABSTRACT

We present a sub-picosecond resolved investigation of the structural solvent reorganization and geminate recombination dynamics following 400 nm two-photon excitation and photodetachment of a valence p electron from the aqueous atomic solute, I-(aq). The measurements utilized time-resolved X-ray Absorption Near Edge Structure (TR-XANES) spectroscopy and X-ray Solution Scattering (TR-XSS) at the Linac Coherent Light Source x-ray free electron laser in a laser pump/x-ray probe experiment. The XANES measurements around the L1-edge of the generated nascent iodine atoms (I0) yield an average electron ejection distance from the iodine parent of 7.4 ± 1.5 Å with an excitation yield of about 1/3 of the 0.1M NaI aqueous solution. The kinetic traces of the XANES measurement are in agreement with a purely diffusion-driven geminate iodine-electron recombination model without the need for a long-lived (I0:e-) contact pair. Nonequilibrium classical molecular dynamics simulations indicate a delayed response of the caging H2O solvent shell and this is supported by the structural analysis of the XSS data: We identify a two-step process exhibiting a 0.1 ps delayed solvent shell reorganization time within the tight H-bond network and a 0.3 ps time constant for the mean iodine-oxygen distance changes. The results indicate that most of the reorganization can be explained classically by a transition from a hydrophilic cavity with a well-ordered first solvation shell (hydrogens pointing toward I-) to an expanded cavity around I0 with a more random orientation of the H2O molecules in a broadened first solvation shell.

9.
J Phys Chem B ; 126(45): 9339-9348, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36343220

ABSTRACT

A polarizable potential function describing the interaction between acetonitrile molecules is introduced. The molecules are described as rigid and linear, with three mass sites corresponding to the CH3 group (methyl, Me), the central carbon atom (C), and the nitrogen atom (N). The electrostatic interaction is represented using a single-center multipole expansion as has been done previously for H2O [Wikfeldt et al., Phys. Chem. Chem. Phys. 15, 16542 (2013)], by including multipole moments from dipole up to and including hexadecapole, as well as anisotropic dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole polarizability tensors. The model is free of point charges. The non-electrostatic part is described in a pair-wise fashion by a Born-Mayer repulsion and damped dispersion attraction. The potential function is parameterized to fit the interaction energy of small (CH3CN)n, n = 2-6, clusters calculated using the PBE0 hybrid functional with an additional atomic many-body dispersion contribution. The parameterized potential function is found to compare well with results of the electronic structure calculations of dissociation curves for different dimer orientations and cohesive properties (the equilibrium volume, cohesive energy, and the bulk modulus) of the α-phase of acetonitrile crystal. The average value of the molecular dipole moment obtained in the α-phase is 5.53 D, corresponding to ca. 40% increase as compared to the dipole moment of an isolated acetonitrile molecule, 3.92 D. The calculated densities of solid and liquid acetonitrile turn out to be 8-10% higher than experimental values. This appears to be caused by an overestimate of the atomic many-body dispersion interaction in the density functional calculations used as input in the parametrization of the potential function.


Subject(s)
Water , Water/chemistry , Static Electricity , Acetonitriles , Physical Phenomena
10.
Phys Chem Chem Phys ; 24(27): 16655-16670, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35766396

ABSTRACT

When characterizing transition metal complexes and their functionalities, the importance of including the solvent as an active participant is becoming more and more apparent. Whereas many studies have evaluated long-range dispersion effects inside organic molecules and organometallics, less is known about their role in solvation. Here, we have analysed the components within solute-solvent and solvent-solvent interactions of one of the most studied iron-based photoswitch model systems, in two spin states. We find that long-range dispersion effects modulate the coordination significantly, and that this is accurately captured by density functional theory models including dispersion corrections. We furthermore correlate gas-phase relaxed complex-water clusters to thermally averaged molecular densities. This shows how the gas-phase interactions translate to solution structure, quantified through 3D molecular densities, angular distributions, and radial distribution functions. We show that finite-size simulation cells can cause the radial distribution functions to have artificially enlarged amplitudes. Finally, we quantify the effects of many-body interactions within the solvent shells, and find that almost a fifth of the total interaction energy of the solute-shell system in the high-spin state comes from many-body contributions, which cannot be captured by by pair-wise additive force field methods.

11.
J Chem Theory Comput ; 17(9): 5863-5875, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34460258

ABSTRACT

In hybrid simulations, such as the QM/MM approach, the system is partitioned into regions that are treated at different levels of theory. The key question then becomes how to evaluate the interactions between particles on opposite sides of the boundary. One approach is to place the boundary in such a way that particles near the boundary on both sides are of the same type, thus simplifying the evaluation of the interactions. If mobile particles are present, such as solvent molecules, and particles are allowed to cross the boundary, the conservation of energy and atomic forces is problematic unless the computational effort is increased significantly. By preventing particles from crossing the boundary but allowing the boundary to be flexible, an accurate estimate of average thermodynamic properties is obtained in principle as illustrated by the flexible inner region ensemble separator (FIRES) method [C. Rowley and B. Roux, J. Chem. Theory Comput. 2012, 8, 3526]. In FIRES, a harmonic restraint is applied to particles near the boundary. Therefore, it can occur that particle cross the boundary to some extent resulting in anomalies in the particle density. Here, a constraint approach is presented where particles instantaneously scatter from the boundary. This scattering-adapted FIRES (SAFIRES) implementation makes use of a variable-time-step propagation algorithm where the time step is scaled automatically to identify the moment a collision should occur. If the length of the time step is kept constant, this propagator reduces to a regular Langevin dynamics algorithm, and to the velocity Verlet algorithm for conservative dynamics if the friction coefficient is set to zero. Correct average ensemble statistics are obtained as demonstrated in simulations where, for testing purposes, the particles in the two regions are treated at the same level of theory, namely, a homogeneous Lennard-Jones (LJ) liquid and liquid water based on the TIP4P potential function. In order to illustrate this approach in solid-liquid interface simulations, a LJ liquid in contact with the surface of a crystal is also simulated. The simulations using SAFIRES are shown to reproduce the unconstrained reference simulations without significant deviations in the particle density and the dynamics are shown to conserve energy when coupling to the heat bath is turned off.

12.
Phys Rev Lett ; 125(22): 226001, 2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33315438

ABSTRACT

Resolving the structural dynamics of the initial steps of chemical reactions is challenging. We report the femtosecond time-resolved wide-angle x-ray scattering of the photodissociation of diiodomethane in cyclohexane. The data reveal with structural detail how the molecule dissociates into radicals, how the radicals collide with the solvent, and how they form the photoisomer. We extract how translational and rotational kinetic energy is dispersed into the solvent. We also find that 85% of the primary radical pairs are confined to their original solvent cage and discuss how this influences the downstream recombination reactions.

13.
J Chem Theory Comput ; 16(10): 6560-6574, 2020 Oct 13.
Article in English | MEDLINE | ID: mdl-32880452

ABSTRACT

Nanoparticle functionalization is a modern strategy in nanotechnology to build up devices for several applications. Modeling fully decorated metal oxide nanoparticles of realistic size (few nanometers) in an aqueous environment is a challenging task. In this work, we present a case study relevant for solar-light exploitation and for biomedical applications, i.e., a dopamine-functionalized TiO2 nanoparticle (1700 atoms) in bulk water, for which we have performed an extensive comparative investigation with both MM and QM/MM approaches of the structural properties and of the conformational dynamics. We have used a combined multiscale protocol for a more efficient exploration of the complex conformational space. On the basis of the results of this study and of some QM and experimental data, we have defined strengths and limitations of the existing force field parameters. Our findings will be useful for an improved modeling and simulation of many other similar hybrid bioinorganic nanosystems in an aqueous environment that are pivotal in a broad range of nanotechnological applications.


Subject(s)
Dopamine/chemistry , Molecular Dynamics Simulation , Nanoparticles/chemistry , Quantum Theory , Titanium/chemistry , Water/chemistry
15.
Phys Chem Chem Phys ; 22(2): 748-757, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31833490

ABSTRACT

Copper(i) bis-phenanthroline complexes represent Earth-abundant alternatives to ruthenium-based sensitizers for solar energy conversion and photocatalysis. Improved understanding of the solvent-mediated excited-state structural dynamics can help optimize their photoconversion efficiency. Through direct dynamics simulations in acetonitrile and excited-state minimum energy path calculations in vacuum, we uncover the mechanism of the photoinduced flattening motion of the prototypical system [Cu(dmphen)2]+ (dmphen = 2,9-dimethyl-1,10-phenanthroline). We find that the ligand distortion is a two-step process in acetonitrile. The fast component (∼110 fs) is due to spontaneous pseudo Jahn-Teller instability and is largely solvent independent, while the slow component (∼1.2 ps) arises from the mutual interplay between solvent molecules closely approaching the metal center and rotation of the methyl substituents. These results shed new light on the influence of a donor solvent such as acetonitrile and methyl substituents on the flattening dynamics of [Cu(dmphen)2]+.

16.
Angew Chem Int Ed Engl ; 59(1): 364-372, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31602726

ABSTRACT

Iron N-heterocyclic carbene (NHC) complexes have received a great deal of attention recently because of their growing potential as light sensitizers or photocatalysts. We present a sub-ps X-ray spectroscopy study of an FeII NHC complex that identifies and quantifies the states involved in the deactivation cascade after light absorption. Excited molecules relax back to the ground state along two pathways: After population of a hot 3 MLCT state, from the initially excited 1 MLCT state, 30 % of the molecules undergo ultrafast (150 fs) relaxation to the 3 MC state, in competition with vibrational relaxation and cooling to the relaxed 3 MLCT state. The relaxed 3 MLCT state then decays much more slowly (7.6 ps) to the 3 MC state. The 3 MC state is rapidly (2.2 ps) deactivated to the ground state. The 5 MC state is not involved in the deactivation pathway. The ultrafast partial deactivation of the 3 MLCT state constitutes a loss channel from the point of view of photochemical efficiency and highlights the necessity to screen transition-metal complexes for similar ultrafast decays to optimize photochemical performance.

17.
J Chem Theory Comput ; 15(12): 6578-6587, 2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31692344

ABSTRACT

The incorporation of polarization in multiscale quantum-mechanics/molecular-mechanics (QM/MM) simulations is important for a variety of applications, for example, charge-transfer reactions. A recently developed formalism based on a density functional theory description of the QM region and a potential energy function for H2O molecules that includes quadrupole as well as dipole polarizability of the MM region is used to simulate liquid water and water clusters. Analysis of the energy, atomic forces, MM polarization, and structure is presented. A quantitative assessment of the QM/MM-MM/MM interaction energy differences of all possible QM/MM configurations of (H2O)n clusters shows that the interquartile range of the distributions of the QM/MM binding energies is never more than 20 meV/molecule higher or lower than the binding energies produced with either of the single-model results. Comparing these interaction energy differences with the QM/MM induction differences show that they are not systematically caused by the induced MM moments of our polarizable embedding scheme. Optimized hexamer geometries as well as the liquid water structure are shown to be improved in comparison with results obtained using point-charge based embedding models neglecting polarization.

18.
J Chem Theory Comput ; 15(12): 6562-6577, 2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31689104

ABSTRACT

The incorporation of mutual polarization in multiscale simulations where different regions of the system are treated at different level of theory is important in studies of, for example, electronic excitations and charge transfer processes. We present here an energy functional for describing a quantum mechanics/molecular mechanics (QM/MM) scheme that includes reciprocal polarization between the two subsystems. The inclusion of polarization alleviates shortcomings inherent in electrostatic embedding QM/MM models based on point-charge force fields. A density functional theory (DFT) description of the QM subsystem is coupled to a single center multipole expansion (SCME) description of H2O molecules in the MM subsystem that includes anisotropic dipole and quadrupole polarizability as well as static multipoles up to and including the hexadecapole. The energy functional and the coupling scheme is general and can be extended to arbitrary order in terms of both the static and induced moments. Tests of the energy surface for the H2O dimer show that the QM/MM results lie in between the pure DFT and pure SCME values. The consistency of the many-body contributions to the energy and analytical forces is demonstrated for an H2O pentamer.

19.
Chem Sci ; 10(22): 5749-5760, 2019 Jun 14.
Article in English | MEDLINE | ID: mdl-31293761

ABSTRACT

Light-driven molecular reactions are dictated by the excited state potential energy landscape, depending critically on the location of conical intersections and intersystem crossing points between potential surfaces where non-adiabatic effects govern transition probabilities between distinct electronic states. While ultrafast studies have provided significant insight into electronic excited state reaction dynamics, experimental approaches for identifying and characterizing intersections and seams between electronic states remain highly system dependent. Here we show that for 3d transition metal systems simultaneously recorded X-ray diffuse scattering and X-ray emission spectroscopy at sub-70 femtosecond time-resolution provide a solid experimental foundation for determining the mechanistic details of excited state reactions. In modeling the mechanistic information retrieved from such experiments, it becomes possible to identify the dominant trajectory followed during the excited state cascade and to determine the relevant loci of intersections between states. We illustrate our approach by explicitly mapping parts of the potential energy landscape dictating the light driven low-to-high spin-state transition (spin crossover) of [Fe(2,2'-bipyridine)3]2+, where the strongly coupled nuclear and electronic dynamics have been a source of interest and controversy. We anticipate that simultaneous X-ray diffuse scattering and X-ray emission spectroscopy will provide a valuable approach for mapping the reactive trajectories of light-triggered molecular systems involving 3d transition metals.

20.
Phys Rev Lett ; 122(6): 063001, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30822093

ABSTRACT

We report x-ray free electron laser experiments addressing ground-state structural dynamics of the diplatinum anion Pt_{2}POP_{4} following photoexcitation. The structural dynamics are tracked with <100 fs time resolution by x-ray scattering, utilizing the anisotropic component to suppress contributions from the bulk solvent. The x-ray data exhibit a strong oscillatory component with period 0.28 ps and decay time 2.2 ps, and structural analysis of the difference signal directly shows this as arising from ground-state dynamics along the PtPt coordinate. These results are compared with multiscale Born-Oppenheimer molecular dynamics simulations and demonstrate how off-resonance excitation can be used to prepare a vibrationally cold excited-state population complemented by a structure-dependent depletion of the ground-state population which subsequently evolves in time, allowing direct tracking of ground-state structural dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL
...