Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Chem Phys ; 160(9)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38450733

ABSTRACT

We review the GPAW open-source Python package for electronic structure calculations. GPAW is based on the projector-augmented wave method and can solve the self-consistent density functional theory (DFT) equations using three different wave-function representations, namely real-space grids, plane waves, and numerical atomic orbitals. The three representations are complementary and mutually independent and can be connected by transformations via the real-space grid. This multi-basis feature renders GPAW highly versatile and unique among similar codes. By virtue of its modular structure, the GPAW code constitutes an ideal platform for the implementation of new features and methodologies. Moreover, it is well integrated with the Atomic Simulation Environment (ASE), providing a flexible and dynamic user interface. In addition to ground-state DFT calculations, GPAW supports many-body GW band structures, optical excitations from the Bethe-Salpeter Equation, variational calculations of excited states in molecules and solids via direct optimization, and real-time propagation of the Kohn-Sham equations within time-dependent DFT. A range of more advanced methods to describe magnetic excitations and non-collinear magnetism in solids are also now available. In addition, GPAW can calculate non-linear optical tensors of solids, charged crystal point defects, and much more. Recently, support for graphics processing unit (GPU) acceleration has been achieved with minor modifications to the GPAW code thanks to the CuPy library. We end the review with an outlook, describing some future plans for GPAW.

2.
Chem Commun (Camb) ; 59(5): 563-566, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36537010

ABSTRACT

We report bistable indole-containing hemithioindigos (HTIs) with one-way quantitative photoswitching properties. Supported by state-averaged CASPT2/CASSCF calculations, we propose a mechanism for the observed one-way photoswitching that involves an isomer-specific excited state intramolecular proton transfer (ESIPT). Additionally, we developed a thermally bistable oligomer-inspired bipyrrole-containing HTI, which displays large band separation and bidirectional near-quantitative photoisomerization in the near-infrared, bio-optical window.

3.
J Phys Chem B ; 126(45): 9339-9348, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36343220

ABSTRACT

A polarizable potential function describing the interaction between acetonitrile molecules is introduced. The molecules are described as rigid and linear, with three mass sites corresponding to the CH3 group (methyl, Me), the central carbon atom (C), and the nitrogen atom (N). The electrostatic interaction is represented using a single-center multipole expansion as has been done previously for H2O [Wikfeldt et al., Phys. Chem. Chem. Phys. 15, 16542 (2013)], by including multipole moments from dipole up to and including hexadecapole, as well as anisotropic dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole polarizability tensors. The model is free of point charges. The non-electrostatic part is described in a pair-wise fashion by a Born-Mayer repulsion and damped dispersion attraction. The potential function is parameterized to fit the interaction energy of small (CH3CN)n, n = 2-6, clusters calculated using the PBE0 hybrid functional with an additional atomic many-body dispersion contribution. The parameterized potential function is found to compare well with results of the electronic structure calculations of dissociation curves for different dimer orientations and cohesive properties (the equilibrium volume, cohesive energy, and the bulk modulus) of the α-phase of acetonitrile crystal. The average value of the molecular dipole moment obtained in the α-phase is 5.53 D, corresponding to ca. 40% increase as compared to the dipole moment of an isolated acetonitrile molecule, 3.92 D. The calculated densities of solid and liquid acetonitrile turn out to be 8-10% higher than experimental values. This appears to be caused by an overestimate of the atomic many-body dispersion interaction in the density functional calculations used as input in the parametrization of the potential function.


Subject(s)
Water , Water/chemistry , Static Electricity , Acetonitriles , Physical Phenomena
4.
Phys Chem Chem Phys ; 24(27): 16655-16670, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35766396

ABSTRACT

When characterizing transition metal complexes and their functionalities, the importance of including the solvent as an active participant is becoming more and more apparent. Whereas many studies have evaluated long-range dispersion effects inside organic molecules and organometallics, less is known about their role in solvation. Here, we have analysed the components within solute-solvent and solvent-solvent interactions of one of the most studied iron-based photoswitch model systems, in two spin states. We find that long-range dispersion effects modulate the coordination significantly, and that this is accurately captured by density functional theory models including dispersion corrections. We furthermore correlate gas-phase relaxed complex-water clusters to thermally averaged molecular densities. This shows how the gas-phase interactions translate to solution structure, quantified through 3D molecular densities, angular distributions, and radial distribution functions. We show that finite-size simulation cells can cause the radial distribution functions to have artificially enlarged amplitudes. Finally, we quantify the effects of many-body interactions within the solvent shells, and find that almost a fifth of the total interaction energy of the solute-shell system in the high-spin state comes from many-body contributions, which cannot be captured by by pair-wise additive force field methods.

5.
J Chem Theory Comput ; 17(9): 5863-5875, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34460258

ABSTRACT

In hybrid simulations, such as the QM/MM approach, the system is partitioned into regions that are treated at different levels of theory. The key question then becomes how to evaluate the interactions between particles on opposite sides of the boundary. One approach is to place the boundary in such a way that particles near the boundary on both sides are of the same type, thus simplifying the evaluation of the interactions. If mobile particles are present, such as solvent molecules, and particles are allowed to cross the boundary, the conservation of energy and atomic forces is problematic unless the computational effort is increased significantly. By preventing particles from crossing the boundary but allowing the boundary to be flexible, an accurate estimate of average thermodynamic properties is obtained in principle as illustrated by the flexible inner region ensemble separator (FIRES) method [C. Rowley and B. Roux, J. Chem. Theory Comput. 2012, 8, 3526]. In FIRES, a harmonic restraint is applied to particles near the boundary. Therefore, it can occur that particle cross the boundary to some extent resulting in anomalies in the particle density. Here, a constraint approach is presented where particles instantaneously scatter from the boundary. This scattering-adapted FIRES (SAFIRES) implementation makes use of a variable-time-step propagation algorithm where the time step is scaled automatically to identify the moment a collision should occur. If the length of the time step is kept constant, this propagator reduces to a regular Langevin dynamics algorithm, and to the velocity Verlet algorithm for conservative dynamics if the friction coefficient is set to zero. Correct average ensemble statistics are obtained as demonstrated in simulations where, for testing purposes, the particles in the two regions are treated at the same level of theory, namely, a homogeneous Lennard-Jones (LJ) liquid and liquid water based on the TIP4P potential function. In order to illustrate this approach in solid-liquid interface simulations, a LJ liquid in contact with the surface of a crystal is also simulated. The simulations using SAFIRES are shown to reproduce the unconstrained reference simulations without significant deviations in the particle density and the dynamics are shown to conserve energy when coupling to the heat bath is turned off.

6.
J Chem Theory Comput ; 15(12): 6578-6587, 2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31692344

ABSTRACT

The incorporation of polarization in multiscale quantum-mechanics/molecular-mechanics (QM/MM) simulations is important for a variety of applications, for example, charge-transfer reactions. A recently developed formalism based on a density functional theory description of the QM region and a potential energy function for H2O molecules that includes quadrupole as well as dipole polarizability of the MM region is used to simulate liquid water and water clusters. Analysis of the energy, atomic forces, MM polarization, and structure is presented. A quantitative assessment of the QM/MM-MM/MM interaction energy differences of all possible QM/MM configurations of (H2O)n clusters shows that the interquartile range of the distributions of the QM/MM binding energies is never more than 20 meV/molecule higher or lower than the binding energies produced with either of the single-model results. Comparing these interaction energy differences with the QM/MM induction differences show that they are not systematically caused by the induced MM moments of our polarizable embedding scheme. Optimized hexamer geometries as well as the liquid water structure are shown to be improved in comparison with results obtained using point-charge based embedding models neglecting polarization.

7.
J Chem Theory Comput ; 15(12): 6562-6577, 2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31689104

ABSTRACT

The incorporation of mutual polarization in multiscale simulations where different regions of the system are treated at different level of theory is important in studies of, for example, electronic excitations and charge transfer processes. We present here an energy functional for describing a quantum mechanics/molecular mechanics (QM/MM) scheme that includes reciprocal polarization between the two subsystems. The inclusion of polarization alleviates shortcomings inherent in electrostatic embedding QM/MM models based on point-charge force fields. A density functional theory (DFT) description of the QM subsystem is coupled to a single center multipole expansion (SCME) description of H2O molecules in the MM subsystem that includes anisotropic dipole and quadrupole polarizability as well as static multipoles up to and including the hexadecapole. The energy functional and the coupling scheme is general and can be extended to arbitrary order in terms of both the static and induced moments. Tests of the energy surface for the H2O dimer show that the QM/MM results lie in between the pure DFT and pure SCME values. The consistency of the many-body contributions to the energy and analytical forces is demonstrated for an H2O pentamer.

8.
Phys Chem Chem Phys ; 19(40): 27266-27274, 2017 Oct 18.
Article in English | MEDLINE | ID: mdl-28990021

ABSTRACT

Ultrafast X-ray absorption spectroscopy is applied to study the conversion of longitudinal to transverse phonons in aqueous solution. Permanganate solutes serve as X-ray probe molecules that permit the measurement of the conversion of 13.5 GHz, longitudinal phonons to 27 GHz, transverse phonons that propagate with high-frequency sound speed. The experimental results, combined with QM/MM MD simulations, show that the hydrogen bond network around the charged solutes has a glass-like stiffness that persists for at least tens of picoseconds.

SELECTION OF CITATIONS
SEARCH DETAIL
...