Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
Commun Biol ; 7(1): 547, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714803

ABSTRACT

Chemogenetic approaches employing ligand-gated ion channels are advantageous regarding manipulation of target neuronal population functions independently of endogenous second messenger pathways. Among them, Ionotropic Receptor (IR)-mediated neuronal activation (IRNA) allows stimulation of mammalian neurons that heterologously express members of the insect chemosensory IR repertoire in response to their cognate ligands. In the original protocol, phenylacetic acid, a ligand of the IR84a/IR8a complex, was locally injected into a brain region due to its low permeability of the blood-brain barrier. To circumvent this invasive injection, we sought to develop a strategy of peripheral administration with a precursor of phenylacetic acid, phenylacetic acid methyl ester, which is efficiently transferred into the brain and converted to the mature ligand by endogenous esterase activities. This strategy was validated by electrophysiological, biochemical, brain-imaging, and behavioral analyses, demonstrating high utility of systemic IRNA technology in the remote activation of target neurons in the brain.


Subject(s)
Brain , Neurons , Animals , Neurons/metabolism , Brain/metabolism , Ligands , Mice , Phenylacetates/pharmacology , Phenylacetates/metabolism , Receptors, Ionotropic Glutamate/metabolism , Receptors, Ionotropic Glutamate/genetics , Male
2.
Jpn J Clin Oncol ; 54(4): 386-394, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38251773

ABSTRACT

Transient receptor potential cation channel subfamily V member 1 (TRPV1) was identified using capsaicin, a pungent compound that is present in red pepper. The activation of TRPV1 induces an influx of calcium ions into cells and causes excitation of sensory neurons, associating with thermal sensing, sweating and pain. TRPV1 is also identified in various types of cancer cells. The expression of TRPV1 in cancer cells depends on the type of cancer and the stage of the disease. Therefore, TRPV1 has been considered a potential target of medicinal chemistry for drug development, and blocking its activation may lead to cancer therapy and pain relief. However, the details of the pathophysiological function of TRPV1 in vivo are still unclear. To explore practical use of TRPV1, we focused on positron emission tomography imaging and developed a 11C-radiolabeled tracer to visualize TRPV1.


Subject(s)
Positron-Emission Tomography , TRPV Cation Channels , Humans , Capsaicin/metabolism , Pain/drug therapy , TRPV Cation Channels/chemistry , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism
3.
Front Immunol ; 14: 1261256, 2023.
Article in English | MEDLINE | ID: mdl-38022622

ABSTRACT

Introduction: A series of symptoms, including fever, widespread pain, fatigue, and even ageusia, have frequently been reported in the context of various infections, such as COVID-19. Although the pathogenic mechanisms underlying an infection causing fever and pain have been well established, the mechanisms of fatigue induced by infection in specific brain regions remain unclear. Methods: To elucidate whether and how the peripheral infection cause fatigue via regional neuroinflammation, we performed a brain-wide investigation of neuroinflammation in a peripheral pseudoinfection rat model using [18F]DPA-714 positron emission tomography (PET) imaging analysis, in which the polyriboinosinic: polyribocytidylic acid (poly I:C) was intraperitoneally injected. Results: Transient fever lasting for several hours and subsequent suppression of spontaneous activity lasting a few days were induced by poly I:C treatment. Significant increase in plasma interleukin (IL)-1ß, IL-6 and tumour necrosis factor (TNF)-α were observed at 2 and 4 h following poly I:C treatment. PET imaging analysis revealed that the brain uptake of [18F]DPA-714 was significantly increased in several brain regions one day after poly I:C treatment, such as the dorsal raphe (DR), parvicellular part of red nucleus (RPC), A5 and A7 noradrenergic nucleus, compared with the control group. The accumulation of [18F]DPA-714 in the DR, RPC and A5 was positively correlated with subsequent fatigue-like behavior, and that in the A7 tended to positively correlate with fever. Discussion: These findings suggest that peripheral infection may trigger regional neuroinflammation, which may cause specific symptoms such as fatigue. A similar mechanism might be involved in COVID-19.


Subject(s)
COVID-19 , Neuroinflammatory Diseases , Rats , Animals , Positron-Emission Tomography/methods , Pain , COVID-19/complications , Poly I
4.
EJNMMI Res ; 13(1): 36, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37115356

ABSTRACT

BACKGROUND: (S)-2-amino-3-[3-(2-18F-fluoroethoxy)-4-iodophenyl]-2-methylpropanoic acid (18F-FIMP) as a promising PET probe for imaging the tumor-specific L-type amino acid transporter (LAT) 1. Our previous study revealed that 18F-FIMP had a higher affinity for LAT1 than for LAT2 abundantly expressed even in normal cells. 18F-FIMP showed high accumulation in LAT1-positive tumor tissues and low accumulation in inflamed lesions in tumor-bearing mice. However, the affinity of 18F-FIMP for other amino acid transporters was not determined yet. Here, we aimed to determine whether 18F-FIMP has affinity for other tumor-related amino acid transporters, such as sodium- and chloride-dependent neutral and basic amino acid transporter B(0 +) (ATB0,+), alanine serine cysteine transporter 2 (ASCT2), and cystine/glutamate transporter (xCT). PROCEDURES: Cells overexpressing LAT1, ATB0,+, ASCT2, or xCT were established by the transfection of expression vectors for LAT1, ATB0,+, ASCT2, or xCT. Protein expression levels were determined by western blot and immunofluorescent analyses. Transport function was evaluated by a cell-based uptake assay using 18F-FIMP and 14C-labeled amino acids as substrates. RESULTS: Intense signals were observed only for expression vector-transfected cells on western blot and immunofluorescent analyses. These signals were strongly reduced by gene-specific small interfering ribonucleic acid treatment. The uptake values for each 14C-labeled substrate were significantly higher in the transfected cells than in the mock-transfected cells and were significantly inhibited by the corresponding specific inhibitors. The 18F-FIMP uptake values were significantly higher in the LAT1- and ATB0,+-overexpressing cells than in the corresponding mock cells, but no such increase was seen in the ASCT2- or xCT-overexpressing cells. These 18F-FIMP uptake values were significantly decreased by the specific inhibitors for LAT1- and ATB0,+. CONCLUSIONS: We demonstrated that 18F-FIMP has affinity not only for LAT1, but also for ATB0,+. Our results may be helpful for understanding the mechanisms of the whole-body distribution and tumor accumulation of 18F-FIMP.

5.
Mol Pharm ; 20(3): 1842-1849, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36802622

ABSTRACT

Amino acid transporters are upregulated in many cancer cells, and system L amino acid transporters (LAT1-4), in particular, LAT1, which preferentially transports large, neutral, and branched side-chain amino acids, are considered a primary target for cancer positron emission tomography (PET) tracer development. Recently, we developed a 11C-labeled leucine analog, l-α-[5-11C]methylleucine ([5-11C]MeLeu), via a continuous two-step reaction of Pd0-mediated 11C-methylation and microfluidic hydrogenation. In this study, we evaluated the characteristics of [5-11C]MeLeu and also compared the sensitivity to brain tumors and inflammation with l-[11C]methionine ([11C]Met) to determine its potential for brain tumor imaging. Competitive inhibition experiments, protein incorporation, and cytotoxicity experiments of [5-11C]MeLeu were performed in vitro. Further, metabolic analyses of [5-11C]MeLeu were performed using a thin-layer chromatogram. The accumulation of [5-11C]MeLeu in tumor and inflamed regions of the brain was compared with [11C]Met and 11C-labeled (S)-ketoprofen methyl ester by PET imaging, respectively. Transporter assay with various inhibitors revealed that [5-11C]MeLeu is mainly transported via system L amino acid transporters, especially LAT1, into A431 cells. The protein incorporation assay and metabolic assay in vivo demonstrated that [5-11C]MeLeu was neither used for protein synthesis nor metabolized. These results indicate that MeLeu is very stable in vivo. Furthermore, the treatment of A431 cells with various concentrations of MeLeu did not change their viability, even at high concentrations (∼10 mM). In brain tumors, the tumor-to-normal ratio of [5-11C]MeLeu was more elevated than that of [11C]Met. However, the accumulation levels of [5-11C]MeLeu were lower than those of [11C]Met (the standardized uptake value (SUV) of [5-11C]MeLeu and [11C]Met was 0.48 ± 0.08 and 0.63 ± 0.06, respectively). In brain inflammation, no significant accumulation of [5-11C]MeLeu was observed at the inflamed brain area. These data suggested that [5-11C]MeLeu was identified as a stable and safe agent for PET tracers and could help detect brain tumors, which overexpress the LAT1 transporter.


Subject(s)
Brain Neoplasms , Positron-Emission Tomography , Humans , Leucine , Positron-Emission Tomography/methods , Brain Neoplasms/metabolism , Radiopharmaceuticals , Proteins , Cell Line, Tumor
6.
Sci Rep ; 13(1): 1961, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36737550

ABSTRACT

Several limitations of [18F]FDG have been reported, such as nonspecific uptake of inflammation foci. Moreover, [11C]MET has been found to accumulate in normal and inflammatory tissues as well as tumors. To increase specificity to tumor tissues, PET probes with tumor-specific molecular targets have been actively developed. [18F]FIMP was found to be highly accumulated in LAT1-positive tumors but not in inflamed tissue. The aim of this study was to explore whether [18F]FIMP can be used for the early-phase evaluation of radiotherapy accompanied by inflammation, and compare its effectiveness with those of [11C]MET and [18F]FDG. Tumor uptake of [18F]FIMP decreased at day 1 after irradiation, and remained low until day 14. Comparatively, that of [18F]FDG initially decreased at day 3 but was transiently elevated at day 7 and then decreased again at day 10. Decreased tumor uptake of [11C]MET was observed at day 10. In line with the uptake of [18F]FIMP, the ratio of Ki-67 immuno-positive cells in tumor tissues significantly decreased at day 1, 7, and 10 as compared with that in the control. These findings suggest that [18F]FIMP may be a PET probe involved in the early detection and prediction of radiotherapy efficacy, although further clarification is needed.


Subject(s)
Fluorodeoxyglucose F18 , Positron-Emission Tomography , Cell Line, Tumor , Radiopharmaceuticals , Carbon Radioisotopes
7.
RSC Med Chem ; 13(10): 1197-1204, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36325399

ABSTRACT

Transient receptor potential cation channel subfamily V member 1 (TRPV1)-targeted compounds were synthesized by modifying the structure of SB366791, a pharmaceutically representative TRPV1 antagonist. To avoid amide-iminol tautomerization, structurally supported N-methylated amides (i.e., 3-alkoxy-substitued N-meythylamide derivatives of SB366791) were evaluated using a Ca2+ influx assay, in which cells expressed recombinant TRPV1 in the presence of 1.0 µM capsaicin. The antagonistic activities of N-(3-methoxyphenyl)-N-methyl-4-chlorocinnamamide (2) (RLC-TV1004) and N-{3-(3-fluoropropoxy)phenyl}-N-methyl-4-chlorocinnamamide (4) (RLC-TV1006) were found to be approximately three-fold higher (IC50: 1.3 µM and 1.1 µM, respectively) than that of SB366791 (IC50: 3.7 µM). These results will help reinvigorate the potential of SB366791 in medicinal chemistry applications. The 3-methoxy and 3-fluoroalkoxy substituents were used to obtain radioactive [11C]methoxy- or [18F]fluoroalkoxy-incorporated tracers for in vivo positron emission tomography (PET). Using the 11C- or 18F-labeled derivatives, explorative PET imaging trials were performed in rats.

8.
Drug Metab Pharmacokinet ; 44: 100449, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35395593

ABSTRACT

It is widely accepted that uptake and efflux transporters on clearance organs play crucial roles in drug disposition. Although in vitro transporter assay system can identify the intrinsic properties of the target transporters, it is not so easy to precisely predict in vivo pharmacokinetic parameters from in vitro data. Positron emission tomography (PET) imaging is a useful tool to directly assess the activity of drug transporters in humans. We recently developed a practical synthetic method for fluorine-18-labeled pitavastatin ([18F]PTV) as a PET probe for quantitative evaluation of hepatobiliary transport. In the present study, we conducted clinical PET imaging with [18F]PTV and compared the pharmacokinetic properties of the probe for healthy subjects with or without rifampicin pretreatment. Rifampicin pretreatment significantly suppressed the hepatic maximum concentration and biliary excretion of the probe to 52% and 34% of the control values, respectively. Rifampicin treatment markedly decreased hepatic uptake clearance (21% of the control), and moderately canalicular efflux clearance with regard to hepatic concentration (52% of the control). These results demonstrate that [18F]PTV is a useful probe for clinical investigation of the activities of hepatobiliary uptake/efflux transporters in humans.


Subject(s)
Quinolines , Rifampin , Biological Transport , Humans , Liver/metabolism , Membrane Transport Proteins/metabolism , Quinolines/metabolism , Quinolines/pharmacology , Rifampin/metabolism , Rifampin/pharmacology
9.
J Nucl Med ; 63(11): 1761-1767, 2022 11.
Article in English | MEDLINE | ID: mdl-35332095

ABSTRACT

Cyclooxygenase (COX) is a rate-limiting enzyme in the synthesis of proinflammatory prostanoids from arachidonic acid. In vivo imaging of COX by PET is a potentially powerful tool for assessing the inflammatory response to injury, infection, and disease. We previously reported on a promising PET probe for COX imaging, 11C-labeled ketoprofen methyl ester, which can detect COX-1 activation in models of neuroinflammation and neurodegenerative disorders. In the current study, we aimed to design a fluorine-substituted benzoyl group of ketoprofen (FKTP) and to evaluate its racemate and enantiomers (18F-labeled ketoprofen methyl ester, [18F]FKTP-Me) as PET proradiotracers, potential radiopharmaceuticals for in vivo PET study of COX-1. Methods: We performed nucleophilic aromatic 18F-fluorination to obtain the desired racemic radiolabeled probe, (RS)-[18F]FKTP-Me, at a radiochemical yield of 11%-13%. Subsequent high-performance liquid chromatography separation with a chiral column yielded the desired enantiomerically pure (R)- and (S)-[18F]FKTP-Me. We examined the in vivo properties of (RS)-, (R)-, and (S)-[18F]FKTP-Me in PET studies using rats in which hemispheric inflammation was induced by intrastriatally injecting a lipopolysaccharide. Results: Racemic (RS)-[18F]FKTP-Me and enantiomeric (R)- or (S)-[18F]FKTP-Me were synthesized with radiochemical and chemical purities of more than 99%. The metabolite analysis revealed that the racemic (RS)-[18F]FKTP-Me crossed the blood-brain barrier and entered the brain, where it was subsequently hydrolyzed to its pharmacologically active acid form. PET images revealed a high accumulation of (R)-, (S)-, and (RS)-[18F]FKTP in the inflamed regions in rat brain. Moreover, the accumulated radioactivity of (S)-[18F]FKTP-Me was higher than that of (RS)-[18F]FKTP-Me and (R)-[18F]FKTP-Me, which was correlated with the stereospecific inhibitory activity of FKTP against COX-1. Conclusion: From the results of this study, we conclude that racemic (RS)-[18F]FKTP-Me and its enantiomers could act as proradiotracers of neuroinflammation in rat brain by the association of their hydrolyzed acid forms with COX-1 in inflamed regions. In particular, (S)-[18F]FKTP-Me demonstrated suitable properties as a COX-1-specific probe in PET imaging of neuroinflammation.


Subject(s)
Cyclooxygenase 1 , Ketoprofen , Animals , Rats , Cyclooxygenase 1/metabolism , Ketoprofen/metabolism , Neuroinflammatory Diseases , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemistry
10.
Biochem Biophys Res Commun ; 596: 83-87, 2022 03 12.
Article in English | MEDLINE | ID: mdl-35121373

ABSTRACT

In the first-in-human PET study, we evaluated the biodistribution and tumor accumulation of the novel PET probe, (S)-2-amino-3-[3-(2-18F-fluoroethoxy)-4-iodophenyl]-2-methylpropanoic acid (18F-FIMP), which targets the tumor-related L-type amino acid transporter 1 (LAT1), and compared it with L-[methyl-11C]methionine (11C-MET) and 2-Deoxy-2-18F-fluoro-D-glucose (18F-FDG). 18F-FIMP biodistribution was revealed by whole-body and brain scans in 13 healthy controls. Tumor accumulation of 18F-FIMP was evaluated in 7 patients with a brain tumor, and compared with those of 11C-MET and 18F-FDG. None of the subjects had significant problems due to probe administration, such as adverse effects or abnormal vital signs. 18F-FIMP was rapidly excreted from the kidneys to the urinary bladder. There was no characteristic physiological accumulation in healthy controls. 18F-FIMP PET resulted in extremely clear images in patients with suspected glioblastoma compared with 11C-MET and 18F-FDG. 18F-FIMP could be a useful novel PET probe for LAT1-positive tumor imaging including glioblastoma.


Subject(s)
Brain Neoplasms/metabolism , Fluorodeoxyglucose F18/metabolism , Large Neutral Amino Acid-Transporter 1/metabolism , Molecular Probes/metabolism , Positron-Emission Tomography/methods , Adult , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Female , Fluorodeoxyglucose F18/pharmacokinetics , Glioblastoma/diagnostic imaging , Glioblastoma/metabolism , Glioblastoma/pathology , Glioma/diagnostic imaging , Glioma/metabolism , Glioma/pathology , Humans , Male , Molecular Probes/pharmacokinetics , Radiopharmaceuticals/metabolism , Radiopharmaceuticals/pharmacokinetics , Reproducibility of Results , Sensitivity and Specificity , Tissue Distribution
11.
Eur J Nucl Med Mol Imaging ; 49(7): 2265-2275, 2022 06.
Article in English | MEDLINE | ID: mdl-35157105

ABSTRACT

BACKGROUND: Most antiepileptic drug therapies are symptomatic and adversely suppress normal brain function by nonspecific inhibition of neuronal activity. In recent times, growing evidence has suggested that neuroinflammation triggered by epileptic seizures might be involved in the pathogenesis of epilepsy. Although the potential effectiveness of anti-inflammatory treatment for curing epilepsy has been extensively discussed, the limited quantitative data regarding spatiotemporal characteristics of neuroinflammation after epileptic seizures makes it difficult to be realized. We quantitatively analyzed the spatiotemporal changes in neuroinflammation in the early phase after status epilepticus in rats, using translocator protein (TSPO) positron emission tomography (PET) imaging, which has been widely used for the quantitative evaluation of neuroinflammation in several animal models of CNS disease. METHODS: The second-generation TSPO PET probe, [18F]DPA-714, was used for brain-wide quantitative analysis of neuroinflammation in the brains of rats, when the status epilepticus was induced by subcutaneous injection of kainic acid (KA, 15 mg/kg) into those rats. A series of [18F]DPA-714 PET scans were performed at 1, 3, 7, and 15 days after status epilepticus, and the corresponding histological changes, including activation of microglia and astrocytes, were confirmed by immunohistochemistry. RESULTS: Apparent accumulation of [18F]DPA-714 was observed in several KA-induced epileptogenic regions, such as the amygdala, piriform cortex, ventral hippocampus, mediodorsal thalamus, and cortical regions 3 days after status epilepticus, and was reversibly displaced by unlabeled PK11195 (1 mg/kg). Consecutive [18F]DPA-714 PET scans revealed that accumulation of [18F]DPA-714 was focused in the KA-induced epileptogenic regions from 3 days after status epilepticus and was further maintained in the amygdala and piriform cortex until 7 days after status epilepticus. Immunohistochemical analysis revealed that activated microglia but not reactive astrocytes were correlated with [18F]DPA-714 accumulation in the KA-induced epileptogenic regions for at least 1 week after status epilepticus. CONCLUSIONS: These results indicate that the early spatiotemporal characteristics of neuroinflammation quantitatively evaluated by [18F]DPA-714 PET imaging provide valuable evidence for developing new anti-inflammatory therapies for epilepsy. The predominant activation of microglia around epileptogenic regions in the early phase after status epilepticus could be a crucial therapeutic target for curing epilepsy.


Subject(s)
Epilepsy , Status Epilepticus , Animals , Anti-Inflammatory Agents/metabolism , Brain/diagnostic imaging , Brain/metabolism , Disease Models, Animal , Epilepsy/chemically induced , Epilepsy/diagnostic imaging , Fluorine Radioisotopes , Humans , Neuroinflammatory Diseases , Positron-Emission Tomography/methods , Pyrazoles , Pyrimidines , Rats , Receptors, GABA/metabolism , Status Epilepticus/chemically induced , Status Epilepticus/diagnostic imaging , Status Epilepticus/metabolism
12.
Sci Rep ; 11(1): 23623, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34880350

ABSTRACT

Aromatase is an estrogen synthetic enzyme that plays important roles in brain functions. To quantify aromatase expression in the brain by positron emission tomography (PET), we had previously developed [11C]cetrozole, which showed high specificity and affinity. To develop more efficient PET tracer(s) for aromatase imaging, we synthesized three analogs of cetrozole. We synthesized meta-cetrozole, nitro-cetrozole, and iso-cetrozole, and prepared the corresponding 11C-labeled tracers. The inhibitory activities of these three analogs toward aromatase were evaluated using marmoset placenta, and PET imaging of brain aromatase was performed using the 11C-labeled tracers in monkeys. The most promising analog in the monkey study, iso-cetrozole, was evaluated in the human PET study. The highest to lowest inhibitory activity of the analogs toward aromatase in the microsomal fraction from marmoset placenta was in the following order: iso-cetrozole, nitro-cetrozole, cetrozole, and meta-cetrozole. This order showed good agreement with the order of the binding potential (BP) of each 11C-labeled analog to aromatase in the rhesus monkey brain. A human PET study using [11C]iso-analog showed a similar distribution pattern of binding as that of [11C]cetrozole. The time-activity curves showed that elimination of [11C]iso-cetrozole from brain tissue was faster than that of 11C-cetrozole, indicating more rapid metabolism of [11C]iso-cetrozole. [11C]Cetrozole has preferable metabolic stability for brain aromatase imaging in humans, although [11C]iso-cetrozole might also be useful to measure aromatase level in living human brain because of its high binding potential.


Subject(s)
Aniline Compounds/administration & dosage , Aromatase/metabolism , Brain/diagnostic imaging , Carbon Radioisotopes/administration & dosage , Positron-Emission Tomography/methods , Triazoles/administration & dosage , Animals , Brain/enzymology , Humans , Macaca mulatta , Male
13.
ChemMedChem ; 16(21): 3271-3279, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34128324

ABSTRACT

The efficient synthesis of L-[5-11 C]leucine and L-α-[5-11 C]methylleucine has been investigated using a continuous two-step sequence of rapid reactions consisting of Pd0 -mediated 11 C-methylation and microfluidic hydrogenation. The synthesis of L-[5-11 C]leucine and L-α-[5-11 C]methylleucine was accomplished within 40 min with a decay-corrected radiochemical yield of 15-38 % based on [11 C]CH3 I, radiochemical purity of 95-99 %, and chemical purity of 95-99 %. The Pd impurities in the injectable solution measured using inductively coupled plasma mass spectrometry met the international criteria for human use. Positron emission tomography scanning after an intravenous injection of L-[5-11 C]leucine or L-α-[5-11 C]methyl leucine in A431 tumor-bearing mice was performed. As a result, L-α-[5-11 C]methylleucine was found to be a potentially useful probe for visualizing the tumor. Tissue distribution analysis showed that the accumulation value of L-α-[5-11 C]methylleucine in tumor tissue was high [12±3% injected dose/g tissue (%ID/g)].


Subject(s)
Leucine/chemistry , Molecular Probes/chemistry , Palladium/chemistry , Positron-Emission Tomography , Animals , Carbon Radioisotopes , Catalysis , Cell Line, Tumor , Humans , Hydrogenation , Leucine/analogs & derivatives , Leucine/chemical synthesis , Methylation , Mice , Molecular Probes/chemical synthesis , Molecular Structure , Neoplasms, Experimental/diagnostic imaging
15.
Biochem Biophys Res Commun ; 555: 7-12, 2021 05 28.
Article in English | MEDLINE | ID: mdl-33812058

ABSTRACT

Vitamine B1 thiamine is an essential component for glucose metabolism and energy production. The disulfide derivative, thiamine tetrahydrofurfuryl disulfide (TTFD), is more absorbent compared to readily-available water-soluble thiamine salts since it does not require the rate-limiting transport system required for thiamine absorption. However, the detailed pharmacokinetics of thiamine and TTFD under normal and pathological conditions were not clarified yet. Recently, 11C-labeled thiamine and TTFD were synthesized by our group, and their pharmacokinetics were investigated by PET imaging in normal rats. In this study, to clarify the whole body pharmacokinetics of [11C]TTFD in human healthy volunteers, we performed first-in-human PET imaging study with [11C]TTFD, along with radiation dosimetry of [11C]TTFD in humans. METHODS: Synthesis of [11C]TTFD was improved for clinical study. Dynamic whole-body PET images were acquired on three young male normal subjects after intravenous injection of [11C]TTFD. VOIs were defined for source organs on the PET images to measure time-course of [11C]TTFD uptake as percentage injected dose and the number of disintegrations for each organ. Radiation dosimetry was calculated with OLINDA/EXM. RESULTS: We succeeded in developing the improved synthetic method of [11C]TTFD for the first-in-human PET study. In the whole body imaging, uptake of [11C]TTFD by various tissues was almost plateaued at 10 min after intravenous injection, afterward gradually increased for the brain and urinary bladder (urine). %Injected dose was high in the liver, kidney, urinary bladder, heart, spine, brain, spleen, pancreas, stomach, and salivary glands, in this order. %Injected dose per gram of tissue was high also in the pituitary. By dosimetry, the effective radiation dose of [11C]TTFD calculated was 5.5 µSv/MBq (range 5.2-5.7). CONCLUSION: Novel synthetic method enabled clinical PET study with [11C]TTFD, which is a safe PET tracer with a dosimetry profile comparable to other common 11C-PET tracers. Pharmacokinetics of TTFD in the pharmacological dose and at different nutritional states could be further investigated by future quantitative PET studies. Noninvasive in vivo PET imaging for pathophysiology of thiamine-related function may provide diagnostic evidence of novel information about vitamin B1 deficiency in human tissues.


Subject(s)
Fursultiamin/chemical synthesis , Fursultiamin/pharmacokinetics , Positron-Emission Tomography/methods , Radiopharmaceuticals/pharmacokinetics , Adult , Carbon Radioisotopes/chemistry , Carbon Radioisotopes/pharmacokinetics , Fursultiamin/administration & dosage , Humans , Male , Radiometry/methods , Radiopharmaceuticals/administration & dosage , Radiopharmaceuticals/chemical synthesis , Tissue Distribution , Whole Body Imaging/methods
16.
Dent Mater J ; 39(4): 639-647, 2020 Aug 02.
Article in English | MEDLINE | ID: mdl-32249235

ABSTRACT

This study investigated the efficacy of copper (Cu) as an antibacterial element incorporated on titanium (Ti) surface by electrochemical treatment. Cu was incorporated onto Ti surface by micro-arc oxidation (MAO). A small amount of Cu was incorporated into the oxide layer and was found to be in oxidized states. Cu-incorporated samples exhibited no-harmful effect on the proliferation of osteoblastlike cells. Moreover, the difference in antibacterial property between fresh and incubated samples was evaluated using gram-positive and gram-negative facultative anaerobic bacteria. The specific antibacterial property of Cu incorporated into the Ti surface were confirmed. The antibacterial property prolonged upon immersion in physiological saline for 28 days. In other words, MAO-treated Ti containing Cu in this study is expected to achieve long-term antibacterial property in practical usage.


Subject(s)
Copper , Titanium , Anti-Bacterial Agents , Bacteria, Anaerobic , Staphylococcus aureus , Surface Properties
17.
Sci Rep ; 9(1): 15718, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31673030

ABSTRACT

Positron emission tomography (PET) imaging can assist in the early-phase diagnostic and therapeutic evaluation of tumors. Here, we report the radiosynthesis, small animal PET imaging, and biological evaluation of a L-type amino acid transporter 1 (LAT1)-specific PET probe, 18F-FIMP. This probe demonstrates increased tumor specificity, compared to existing tumor-specific PET probes (18F-FET, 11C-MET, and 18F-FDG). Evaluation of probes by in vivo PET imaging, 18F-FIMP showed intense accumulation in LAT1-positive tumor tissues, but not in inflamed lesions, whereas intense accumulation of 18F-FDG was observed in both tumor tissues and in inflamed lesions. Metabolite analysis showed that 18F-FIMP was stable in liver microsomes, and mice tissues (plasma, urine, liver, pancreas, and tumor). Investigation of the protein incorporation of 18F-FIMP showed that it was not incorporated into protein. Furthermore, the expected mean absorbed dose of 18F-FIMP in humans was comparable or slightly higher than that of 18F-FDG and indicated that 18F-FIMP may be a safe PET probe for use in humans. 18F-FIMP may provide improved specificity for tumor diagnosis, compared to 18F-FDG, 18F-FET, and 11C-MET. This probe may be suitable for PET imaging for glioblastoma and the early-phase monitoring of cancer therapy outcomes.


Subject(s)
Arthritis, Experimental/metabolism , Large Neutral Amino Acid-Transporter 1/metabolism , Neoplasms/metabolism , Positron-Emission Tomography/methods , Radiopharmaceuticals/metabolism , Animals , Arthritis, Experimental/diagnostic imaging , Cell Line , Cell Line, Tumor , Disease Models, Animal , Humans , Mice , Neoplasms/diagnostic imaging , Proteins/metabolism , Radiopharmaceuticals/pharmacokinetics , Tissue Distribution
18.
Dent Mater J ; 38(4): 638-645, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31178545

ABSTRACT

Differences in the volumes of artifacts caused by variously shaped titanium objects on magnetic resonance imaging (MRI) were evaluated. Spherical-, square cubic-, and regular tetrahedron-shaped isotropic, and elongated spherical-, elongated cubic-, and elongated tetrahedron-shaped anisotropic objects, with identical volumes, were prepared. Samples were placed on a nickel-doped agarose gel phantom and covered with nickel-nitrate hexahydrate solution. Three-Tesla MR images were obtained using turbo spin echo and gradient echo sequences. Areas with ±30% of the signal intensity of the standard background value were considered artifacts. Sample volumes were deducted from these volumes to calculate the total artifact volumes. Isotropic samples had similar artifact volumes. For anisotropic samples, the artifact volume increased in proportion with the normalized projection area. MRI artifact size can be reduced by high anisotropic designs, and by positioning the long axis of the metal device as parallel as possible to the magnetic field axis.


Subject(s)
Artifacts , Magnetic Resonance Imaging , Titanium
19.
J Mech Behav Biomed Mater ; 98: 79-89, 2019 10.
Article in English | MEDLINE | ID: mdl-31203100

ABSTRACT

The aim of the study was to investigate the effect of post-heat treatment on the microstructures and fatigue strengths of Co-Cr-Mo (CCM) clasps prepared by selective laser melting (SLM). Clasp specimens and rod-shaped specimens were fabricated by SLM using CCM powders with different angulations (0°, 45°, and 90°). Two heat treatment conditions were used: 1 and 6 h at 1150 °C in an argon atmosphere followed by cooling in a furnace. Subsequently, the fatigue strength and microstructure were investigated. The results revealed that for the control group, the mean fatigue life was different when building angulations were changed as manifested by the control-90 specimen, which exhibited the highest fatigue life, followed by control-45 and then control-0. One-hour heat treated samples showed higher fatigue strength in all axes than the 0°- and 45°-axes control samples and lower fatigue strength than the 90°-axes control samples. The survival rate after heat treatment for 1 h exhibited no significant difference in all the axes. In terms of microstructure, after heat treatment, the samples showed homogeneous equiaxed grain and randomized texture in all angulations. Therefore, using a post-heat treatment can reduce the anisotropy effect on the microstructure and fatigue strength due to homogenized microstructure.


Subject(s)
Dental Clasps , Hot Temperature , Lasers , Mechanical Phenomena , Phase Transition , Stress, Mechanical
20.
Dent Mater J ; 38(3): 496-504, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-31068553

ABSTRACT

To elucidate the mechanism of adhesion of soft and hard tissues to yttria-stabilized tetragonal zirconia polycrystalline (Y-TZP), Y-TZP and titanium disks were immersed in ultrapure water and in Hanks' solution, and the changes in the surface compositions and chemical states were characterized using X-ray photoelectron spectroscopy. After immersion in ultrapure water for 60 days, the concentration of hydroxyl groups on the Y-TZP surface increased. In addition, only phosphate ions were incorporated into the surface during immersion in Hanks' solution, while other ions did not react. On the other hand, the surface of Ti was also hydrated in ultrapure water; however, calcium phosphate formed on it during immersion in Hanks' solution. Therefore, the reactivity of Y-TZP with electrolytes was lower than that of Ti. We conclude that the formation of the phosphate on the Y-TZP surface in physiological conditions possibly enhances the adhesion of soft and hard tissues to Y-TZP.


Subject(s)
Water , Yttrium , Materials Testing , Photoelectron Spectroscopy , Surface Properties , Zirconium
SELECTION OF CITATIONS
SEARCH DETAIL
...