Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Chemistry ; 27(34): 8714-8722, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-33830552

ABSTRACT

The separation and isolation of many of the platinum group metals (PGMs) is currently achieved commercially using solvent extraction processes. The extraction of rhodium is problematic however, as a variety of complexes of the form [RhCln (H2 O)6-n ](n-3)- are found in hydrochloric acid, making it difficult to design a reagent that can extract all the rhodium. In this work, the synergistic combination of a primary amine (2-ethylhexylamine, LA ) with a primary amide (3,5,5-trimethylhexanamide, L1 ) is shown to extract over 85 % of rhodium from 4 M hydrochloric acid. Two rhodium complexes are shown to reside in the organic phase, the ion-pair [HLA ]3 [RhCl6 ] and the amide complex [HLA ]2 [RhCl5 (L1 )]; in the latter complex, the amide is tautomerized to its enol form and coordinated to the rhodium centre through the nitrogen atom. This insight highlights the need for ligands that target specific metal complexes in the aqueous phase and provides an efficient synergistic solution for the solvent extraction of rhodium.


Subject(s)
Rhodium , Amides , Amines , Hydrochloric Acid , Solvents
2.
Angew Chem Int Ed Engl ; 55(40): 12436-9, 2016 09 26.
Article in English | MEDLINE | ID: mdl-27554437

ABSTRACT

Waste electrical and electronic equipment (WEEE) such as mobile phones contains a plethora of metals of which gold is by far the most valuable. Herein a simple primary amide is described that achieves the selective separation of gold from a mixture of metals typically found in mobile phones by extraction into toluene from an aqueous HCl solution; unlike current processes, reverse phase transfer is achieved simply using water. Phase transfer occurs by dynamic assembly of protonated and neutral amides with [AuCl4 ](-) ions through hydrogen bonding in the organic phase, as shown by EXAFS, mass spectrometry measurements, and computational calculations, and supported by distribution coefficient analysis. The fundamental chemical understanding gained herein should be integral to the development of metal-recovery processes, in particular through the use of dynamic assembly processes to build complexity from simplicity.

3.
Dalton Trans ; 45(7): 3055-62, 2016 Feb 21.
Article in English | MEDLINE | ID: mdl-26763168

ABSTRACT

Alkyl-substituted phenolic pyrazoles such as 4-methyl-2-[5-(n-octyl)-1H-pyrazol-3-yl]phenol (L2H) are shown to function as Cu-extractants, having similar strength and selectivity over Fe(iii) to 5-nonylsalicylaldoxime which is a component of the commercially used ACORGA® solvent extraction reagents. Substitution in the phenol ring of the new extractants has a major effect on their strength, e.g. 2-nitro-4-methyl-6-[5-(2,4,4-trimethylpentyl)-1H-pyrazol-3-yl]phenol (L4H) which has a nitro group ortho to the phenolic hydroxyl group unit and has an extraction distribution coefficient for Cu nearly three orders of magnitude higher than its unsubstituted analogue 4-methyl-6-[5-(2,4,4-trimethylpentyl)-1H-pyrazol-3-yl]phenol (L8H). X-ray structure determinations and density functional theory (DFT) calculations confirm that inter-ligand hydrogen bonding between the pyrazole NH group and the phenolate oxygen atom stabilise the Cu-complexes, giving pseudomacrocyclic structures. Electron-accepting groups ortho to the phenol oxygen atoms buttress the inter-ligand H-bonding, enhancing extractant strength but the effectiveness of this is very dependent on steric factors. The correlation between the calculated energies of formation of copper complexes in the gas phase and the observed strength of comparably substituted reagents in solvent extraction experiments is remarkable. Analysis of the energies of formation suggests that big differences in strength of extractants arise principally from a combination of the effects of the substituents on the ease of deprotonation of the proligands and, for the ortho-substituted ligands, their propensity to buttress inter-ligand hydrogen bonding.

4.
Inorg Chem ; 54(17): 8685-92, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26308970

ABSTRACT

High anion selectivity for PtCl6(2-) over Cl(-) is shown by a series of amidoamines, R(1)R(2)NCOCH2CH2NR(3)R(4) (L1 with R(1) = R(4) = benzyl and R(2) = R(3) = phenyl and L3 with R(1) = H, R(2) = 2-ethylhexyl, R(3) = phenyl and R(4) = methyl), and amidoethers, R(1)R(2)NCOCH2CH2OR(3) (L5 with R(1) = H, R(2) = 2-ethylhexyl and R(3) = phenyl), which provide receptor sites which extract PtCl6(2-) preferentially over Cl(-) in extractions from 6 M HCl solutions. The amidoether receptor L5 was found to be a much weaker extractant for PtCl6(2-) than its amidoamine analogues. Density functional theory calculations indicate that this is due to the difficulty in protonating the amidoether to generate a cationic receptor, LH(+), rather than the latter showing weaker binding to PtCl6(2-). The most stable forms of the receptors, LH(+), contain a tautomer in which the added proton forms an intramolecular hydrogen bond to the amide oxygen atom to give a six-membered proton chelate. Dispersion-corrected DFT calculations appear to suggest a switch in ligand conformation for the amidoamine ligands to an open tautomer state in the complex, such that the cationic N-H or O-H groups are also readily available to form hydrogen bonds to the PtCl6(2-) ion, in addition to the array of polarized C-H bonds. The predicted difference in energies between the proton chelate and nonchelated tautomer states for L1 is small, however, and the former is found in the X-ray crystal structure of the assembly [(L1H)2PtCl6]. The DFT calculations and the X-ray structure indicate that all LH(+) receptors present an array of polarized C-H groups to the large, charge diffuse PtCl6(2-) anion resulting in high selectivity of extraction of PtCl6(2-) over the large excess of chloride.

SELECTION OF CITATIONS
SEARCH DETAIL
...