Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Eur J Nutr ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38750160

ABSTRACT

PURPOSE: The aim of this study was to investigate the effects of different ω-3 polyunsaturated fatty acid (PUFA) enriched diets, including a novel renewable plant source of ω-3 fatty acids (Buglossoides arvensis), on the development and progression of rheumatoid arthritis (RA). METHODS: RA was induced in mice consuming experimental diets using the K/BxN model. The experimental diets consisted of either a western control diet (control), diets containing B. arvensis oil or fish oil. The effects of the diets on platelets, platelet microvesicles (PMVs), and inflammatory markers such as clinical index, ankle thickness and cytokine/chemokine release were measured. RESULTS: While ω-3 PUFA-enriched diets did not prevent the development of arthritis in the K/BxN model, a significant decrease in ankle swelling was observed compared to the control group. Platelets isolated from mice consuming either low content of B. arvensis oil or fish oil diets exhibited significantly decreased PMVs production compared to mice consuming the control diet. CONCLUSION: Our study provides insight into the contribution of ω-3 PUFA supplementation in modulating the pro-inflammatory phenotype of platelets in RA pathology. Furthermore, our study suggests that low concentrations of dietary B. arvensis oil may have similar anti-inflammatory potential seen with dietary fish oil supplementation.

2.
Drug Dev Res ; 85(3): e22181, 2024 May.
Article in English | MEDLINE | ID: mdl-38619209

ABSTRACT

The involvement of lipoxygenases in various pathologies, combined with the unavailability of safe and effective inhibitors of the biosynthesis of their products, is a source of inspiration for the development of new inhibitors. Based on a structural analysis of known inhibitors of lipoxygenase products biosynthesis, a comprehensive structure-activity study was carried out, which led to the discovery of several novel compounds (16a-c, 17a) demonstrating promising potency to inhibit the biosynthesis of products of 5-, 12- and 15-LO. Compounds 16b and 16c outperformed zileuton (1), the only FDA-approved 5-LO inhibitor, as well as known inhibitors such as caffeic acid phenethyl ester (CAPE (2)) and cinnamyl-3,4-dihydroxy-α-cyanocinnamate (CDC (4)). However, the introduction of a cyano group at the α-position of the carbonyl abolished the activity. Compounds 16a and 17a also inhibited the biosynthesis of 12- and 15-LO products. Compounds 16a, 17a far surpassed baicalein, a known 12-LO inhibitor, as inhibitors of 12-LO products biosynthesis. Compound 17a and CDC (4) showed equivalent inhibition of LO products, proposing that the double bond in the ester moiety is not necessary for the inhibitory activity. The introduction of the cyano group, as in compound 17a, at the α-position of the carbonyl in compound 16a significantly reduced the inhibitory activity against the biosynthesis of 15-LO products. In addition to the interactions with residues His372 and Phe421 also found with zileuton and CAPE, compounds 16a and 16c each interact with residue His367 as shown by molecular docking. This new interaction may explain their high affinity with the 5-LO active site.


Subject(s)
Arachidonate 15-Lipoxygenase , Cinnamates , Hydroxyurea/analogs & derivatives , Molecular Docking Simulation , Structure-Activity Relationship
3.
Chem Biodivers ; 21(4): e202301758, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38241641

ABSTRACT

Propolis was collected from honeybee hives in three geographically distinct Algerian climates and extracts were characterized for composition and bioactivity. Bees were identified as native subspecies using an in-silico DraI mtDNA COI-COII test. Over 20 compounds were identified in extracts by LC-MS. Extracts from the Medea region were more enriched in phenolic content (302±28 mg GAE/g of dry extract) than those from Annaba and Ghardaia regions. Annaba extracts had the highest flavonoid content (1870±385 mg QCE/g of dry extract). Medea extracts presented the highest free-radical scavenging activity (IC50=13.5 µg/mL) using the DPPH radical assay while Ghardaia extracts from the desert region were weak (IC50>100 µg/mL). Antioxidant activities measured using AAPH oxidation of linoleic acid were similar in all extracts with IC50 values ranging from 2.9 to 4.9 µg/mL. All extracts were cytotoxic (MTT assay) and proapoptotic (Annexin-V) against human leukemia cell lines in the low µg/mL range, although the Annaba extract was less active against the Reh cell line. Extracts inhibited cellular 5-lipoxygenase product biosynthesis with IC50 values ranging from 0.6 to 3.2 µg/mL. Overall, examined propolis extracts exhibited significant biological activity that warrant further characterization in cellular and in vivo models.


Subject(s)
Antioxidants , Propolis , Animals , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Propolis/pharmacology , Propolis/chemistry , Arachidonate 5-Lipoxygenase , Plant Extracts/chemistry , Phenols/pharmacology , Flavonoids/pharmacology
4.
PLoS One ; 19(1): e0291399, 2024.
Article in English | MEDLINE | ID: mdl-38232088

ABSTRACT

OBJECTIVE: Mouse models are valuable in preclinical studies of inflammatory arthritis. However, current methods for measuring disease severity or responses to treatment are not optimal. In this study a smart cage system using multiple sensors to measure locomotor activity was evaluated in the K/BxN serum transfer model of inflammatory arthritis. METHODS: Arthritis was induced in C57BL/6 mice with injections of K/BxN serum. Clinical index and ankle thickness were measured for 14 days. Locomotor activity was measured in smart cages for 23 h periods on Days 0, 7, and 13. The same measurements were taken in mice consuming diets supplemented or not with fish oil to evaluate a preventative treatment. RESULTS: Initiation, peak and resolution phases of disease could be measured with the smart cages. Locomotor activity including speed, travel distance, number of active movements and rear movements were all significantly lower on Days 7-8 of illness (peak) compared to Days 0 and 13-14 (resolution) (one-way repeated measures analyses, p<0.05). The clinical index and ankle thickness measurements did not capture differences between dietary groups. Significantly increased activity was measured in most of the locomotor parameters in the fish oil group compared to the control mice at both Days 8 and 14 (2-way repeated measures ANOVA, p<0.05). CONCLUSION: The measurement of locomotor activity provided a more detailed evaluation of the impact of inflammatory arthritis on animal well-being and mobility than that provided by measuring clinical index and ankle thickness, and could be a valuable tool in preclinical studies of inflammatory arthritis.


Subject(s)
Arthritis, Experimental , Arthritis , Mice , Animals , Mice, Inbred C57BL , Disease Models, Animal , Locomotion , Fish Oils/pharmacology
5.
Int Immunopharmacol ; 121: 110419, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37295028

ABSTRACT

The inflammatory response is an essential process for the host defence against pathogens. Lipid mediators are important in coordinating the pro-inflammatory and pro-resolution phases of the inflammatory process. However, unregulated production of these mediators has been associated with chronic inflammatory diseases such as arthritis, asthma, cardiovascular diseases, and several types of cancer. Therefore, it is not surprising that enzymes implicated in the production of these lipid mediators have been targeted for potential therapeutic approaches. Amongst these inflammatory molecules, the 12-hydroxyeicosatetraenoic acid (12(S)-HETE) is abundantly produced in several diseases and is primarily biosynthesized via the platelet's 12-lipoxygenase (12-LO) pathway. To this day, very few compounds selectively inhibit the 12-LO pathway, and most importantly, none are currently used in the clinical settings. In this study, we investigated a series of polyphenol analogues of natural polyphenols that inhibit the 12-LO pathway in human platelets without affecting other normal functions of the cell. Using an ex vivo approach, we found one compound that selectively inhibited the 12-LO pathway, with IC50 values as low as 0.11 µM, with minimal inhibition of other lipoxygenase or cyclooxygenase pathways. More importantly, our data show that none of the compounds tested induced significant off-target effects on either the platelet's activation or its viability. In the continuous search for specific and better inhibitors targeting the regulation of inflammation, we characterized two novel inhibitors of the 12-LO pathway that could be promising for subsequent in vivo studies.


Subject(s)
Arachidonate 12-Lipoxygenase , Arachidonate 5-Lipoxygenase , Humans , Arachidonate 5-Lipoxygenase/metabolism , Caffeic Acids/pharmacology , Lipids , Lipoxygenase Inhibitors/pharmacology
6.
Insect Biochem Mol Biol ; 152: 103892, 2023 01.
Article in English | MEDLINE | ID: mdl-36493963

ABSTRACT

High-fat diets (HFDs) are often used to study metabolic disorders using different animal models. However, the underlying cellular mechanisms pertaining to the concurrent loss of metabolic homeostasis characteristics of these disorders are still unclear mainly because the effects of such diets are also dependent on the time frame of the experiments. Here, we used the fruit fly, Drosophila melanogaster, to investigate the metabolic dynamic effects following 0, 2, 4, 7 and 9 days of an exposure to a HFD (standard diet supplemented with 20% w/v coconut oil, rich in 12:0 and 14:0) by combining NMR metabolomics and GC-FID fatty acid profiling. Our results show that after 2 days, the ingested 12:0 and 14:0 fatty acids are used for both lipogenesis and fatty acid oxidation. After 4 days, metabolites from several different pathways are highly modulated in response to the HFD, and an accumulation of 12:0 is also observed, suggesting that the balance of lipid, amino acid and carbohydrate metabolism is profoundly perturbed at this specific time point. Following a longer exposure to the HFD (and notably after 9 days), an accumulation of many metabolites is observed indicating a clear dysfunction of the metabolic system. Overall, our study highlights the relevance of the Drosophila model to study metabolic disorders and the importance of the duration of the exposure to a HFD to study the dynamics of the fundamental mechanisms that control metabolism following exposure to dietary fats. This knowledge is crucial to understand the development and progression of metabolic diseases.


Subject(s)
Diet, High-Fat , Metabolic Diseases , Animals , Fatty Acids/metabolism , Drosophila melanogaster/metabolism , Lipid Metabolism , Metabolome , Drosophila/metabolism
7.
J Nat Prod ; 85(1): 225-236, 2022 01 28.
Article in English | MEDLINE | ID: mdl-34995066

ABSTRACT

Sinapic acid is found in many edible plants and fruits, such as rapeseed, where it is the predominant phenolic compound. New sinapic acid phenethyl ester (SAPE) analogues were synthesized and screened as inhibitors of the biosynthesis of 5-lipoxygenase (5-LO) in stimulated HEK293 cells and polymorphonuclear leukocytes (PMNL). Inhibition of leukotriene biosynthesis catalyzed by 5-LO is a validated therapeutic strategy against certain inflammatory diseases and allergies. Unfortunately, the only inhibitor approved to date has limited clinical use because of its poor pharmacokinetic profile and liver toxicity. With the new analogues synthesized in this study, the role of the phenolic moiety, ester function, and bioisosterism was investigated. Several of the 34 compounds inhibited the biosynthesis of 5-LO products, and 20 compounds were 2-11 times more potent than zileuton in PMNL, which are important producers of 5-LO products. Compounds 5i (IC50: 0.20 µM), 5l (IC50: 0.20 µM), and 5o (IC50: 0.21 µM) bearing 4-trifluoromethyl, methyl, or methoxy substituent at meta-position of the phenethyl moiety were 1.5 and 11.5 times more potent than SAPE (IC50: 0.30 µM) and zileuton (IC50: 2.31 µM), respectively. Additionally, compound 9 (IC50: 0.27 µM), which was obtained after acetylation of the 4-hydroxyl of SAPE, was equivalent to SAPE and 8 times more active than zileuton. Furthermore, compound 20b (IC50: 0.27 µM) obtained after the bioisosteric replacement of the ester function of SAPE by the 1,2,4-oxadiazole heterocycle was equivalent to SAPE and 8 times more active than zileuton. Thus, this study provides a basis for the rational design of new molecules that could be developed further as anti 5-LO therapeutics.


Subject(s)
Arachidonate 5-Lipoxygenase/biosynthesis , Coumaric Acids/chemistry , Coumaric Acids/pharmacology , Esters/chemistry , HEK293 Cells , Humans , Neutrophils/drug effects , Neutrophils/metabolism , Phenylethyl Alcohol/analogs & derivatives , Structure-Activity Relationship
8.
Molecules ; 25(10)2020 May 21.
Article in English | MEDLINE | ID: mdl-32455632

ABSTRACT

Soxhlet (SE), microwave-assisted (MAE) and ultrasound-assisted (UAE) extraction were compared using ten extraction solvents for their efficiency to extract phenolic and flavonoid antioxidants from Eastern Canada propolis. Extracts were compared for total phenolic (TPC) and total flavonoid (TFC) content, and radical scavenging activities. Anti-inflammatory activity through inhibition of 5-lipoxygenase (5-LO) products biosynthesis in HEK293 cells was also evaluated. The results showed that SE extracts using polar solvents had the highest TPC and TFC. Extracts obtained with ethanol, methanol and acetone were effective free radical scavengers, and showed 5-LO inhibition similar to zileuton. UAE was an effective extraction method since the extracts obtained were comparable to those using SE and the MAE while being done at room temperature. With UAE, extracts of less polar solvents showed similar free radical scavenging and 5-LO inhibition to extracts of much more polar solvents such as methanol or ethanol. Reversed-phase liquid chromatography tandem mass spectrometry confirmed the presence of 21 natural compounds in the propolis extracts based on the comparison of intact mass, chromatographic retention time and fragmentation patterns derived from commercial analytical standards. The current study is the first of its kind to concurrently investigate solvent polarity as well as extraction techniques of propolis.


Subject(s)
Antioxidants/chemistry , Biological Products/chemistry , Lipoxygenase Inhibitors/chemistry , Propolis/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Arachidonate 5-Lipoxygenase/chemistry , Biological Products/classification , Biological Products/isolation & purification , HEK293 Cells , Humans , Lipoxygenase Inhibitors/isolation & purification , Lipoxygenase Inhibitors/pharmacology , Phenols/chemistry , Phytochemicals/chemistry , Phytochemicals/pharmacology , Propolis/pharmacology
9.
Pharmacol Res Perspect ; 7(5): e00524, 2019 10.
Article in English | MEDLINE | ID: mdl-31523435

ABSTRACT

5-lipoxygenase (5-LO) catalyzes the biosynthesis of leukotrienes, potent lipid mediators involved in inflammatory diseases, and both 5-LO and the leukotrienes are validated therapeutic targets. Caffeic acid phenethyl ester (CAPE) is an effective inhibitor of 5-LO and leukotriene biosynthesis but is susceptible to hydrolysis by esterases. In this study a number of CAPE analogues were synthesized with modifications to the caffeoyl moiety and the replacement of the ester linkage with a ketone. Several new molecules showed better inhibition of leukotriene biosynthesis than CAPE in isolated human neutrophils and in whole blood with IC50 values in the nanomolar (290-520 nmol/L) and low micromolar (1.0-2.3 µmol/L) ranges, respectively. Sinapic acid and 2,5-dihydroxy derivatives were more stable than CAPE in whole blood, and ketone analogues were degraded more slowly in HepaRG hepatocyte cultures than esters. All compounds underwent modification consistent with glucuronidation in HepaRG cultures as determined using LC-MS/MS analysis, though the modified sinapoyl ketone (10) retained 50% of its inhibitory activity after up to one hour of incubation. This study has identified at least one CAPE analogue, compound 10, that shows favorable properties that warrant further in vivo investigation as an antiinflammatory compound.


Subject(s)
Arachidonate 5-Lipoxygenase/metabolism , Hydroxybenzoates/chemical synthesis , Ketones/chemical synthesis , Lipoxygenase Inhibitors/chemical synthesis , Blood Chemical Analysis , Caffeic Acids/chemistry , Cell Line , Drug Stability , Esters/chemistry , HEK293 Cells , Humans , Hydroxybenzoates/chemistry , Hydroxybenzoates/pharmacology , Inhibitory Concentration 50 , Ketones/chemistry , Ketones/pharmacology , Lipoxygenase Inhibitors/chemistry , Lipoxygenase Inhibitors/pharmacology , Molecular Docking Simulation , Neutrophils/chemistry , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/chemistry
10.
Eur J Med Chem ; 179: 347-357, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31260889

ABSTRACT

The inhibition of 5-lipoxygenase (5-LO), the key enzyme for the biosynthesis of leukotrienes (LTs), has generated increasing enthusiasm as anti-inflammatory and antitumor strategies in recent years. Based on our previous studies, we synthesized a series of dihydroxycinnamic acid-based analogs that might be 5-LO inhibitors. LTs biosynthesis inhibition in HEK293 cells and polymorphonuclear leukocytes (PMNL) was measured and antitumor activities were investigated in Renal Cell Carcinoma (RCC). Results showed that the 2,5-dihydroxycinnamic acid phenethyl ester (10b) was the best 5-LO inhibitor and was 7-fold more potent than Zileuton (1), the only clinically approved 5-LO inhibitor. 2,5-Dihydroxy substitution was more favorable to 5-LO inhibition since compound 10b is twice as active as CAPE (2) which is a 3,4-dihydroxylcinnamic acid ester. Meanwhile, 10b reduced the cell viability of renal cancer cells  and was more selective toward RCC4 and 786.0 cells which are deficient for the Von Hippel-Lindau (VHL) tumor suppressor gene. As to the underlying cell-death mechanisms, 10b induced apoptosis in VHL-deficient RCC4 cells. Also, increases in LC3B and p62 expression suggest a blockage of the autophagic flux in RCC in response to 10b.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Arachidonate 5-Lipoxygenase/metabolism , Carcinoma, Renal Cell/drug therapy , Drug Discovery , Kidney Neoplasms/drug therapy , Lipoxygenase Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Arachidonate 5-Lipoxygenase/biosynthesis , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HEK293 Cells , Humans , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Lipoxygenase Inhibitors/chemical synthesis , Lipoxygenase Inhibitors/chemistry , Molecular Structure , Neutrophils/drug effects , Neutrophils/metabolism , Structure-Activity Relationship
11.
Chem Biol Drug Des ; 92(5): 1876-1887, 2018 11.
Article in English | MEDLINE | ID: mdl-29953727

ABSTRACT

Given the hepatotoxicity and an unfavorable pharmacokinetic profile of zileuton (Zyflo® ), currently the only approved and clinically used 5-Lipoxygenase (5-LO) inhibitor, the search for potent and safe 5-LO inhibitors is highly demanded. The action of several phenolic acid phenethyl esters as potential 5-Lipoxygenase (5-LO) inhibitors has been investigated. For this purpose, a series of 14 phenethyl esters was synthesized and their impact on 5-LO inhibition was evaluated. The effects of position and number of hydroxyl and methoxy groups on the phenolic acid were investigated. The shortening of the linker between the carbonyl and the catechol moiety as well as the presence of the α,ß-unsaturated carbonyl group was also explored. The sinapic acid phenethyl ester (10), which can be named SAPE (10) by analogy to caffeic acid phenethyl ester (CAPE), inhibited 5-LO in a concentration-dependent manner and outperformed both zileuton (1) and CAPE (2). With an IC50 of 0.3 µm, SAPE (10) was threefold more potent than CAPE (2) and 10-fold more potent than zileuton (1), the only 5-LO inhibitor approved for clinical use. Unlike CAPE (2), SAPE (10) had no effect on 12-lipoxygenase (12-LO) and less effect on cyclooxygenase 1 (COX-1) which makes it a more selective 5-LO inhibitor.


Subject(s)
Arachidonate 5-Lipoxygenase/chemistry , Coumaric Acids/chemistry , Esters/chemistry , Lipoxygenase Inhibitors/chemical synthesis , Arachidonate 5-Lipoxygenase/metabolism , Binding Sites , Cyclooxygenase 1/biosynthesis , Esters/chemical synthesis , Esters/metabolism , Free Radical Scavengers/chemistry , HEK293 Cells , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Lipoxygenase Inhibitors/chemistry , Lipoxygenase Inhibitors/metabolism , Molecular Docking Simulation , Protein Structure, Tertiary , Structure-Activity Relationship
12.
Molecules ; 22(7)2017 Jul 06.
Article in English | MEDLINE | ID: mdl-28684707

ABSTRACT

Glioblastoma multiforme (GBM) is an aggressive brain tumor that correlates with short patient survival and for which therapeutic options are limited. Polyphenolic compounds, including caffeic acid phenethyl ester (CAPE, 1a), have been investigated for their anticancer properties in several types of cancer. To further explore these properties in brain cancer cells, a series of caffeic and ferulic acid esters bearing additional oxygens moieties (OH or OCH3) were designed and synthesized. (CAPE, 1a), but not ferulic acid phenethyl ester (FAPE, 1b), displayed substantial cytotoxicity against two glioma cell lines. Some but not all selected compounds derived from both (CAPE, 1a) and (FAPE, 1b) also displayed cytotoxicity. All CAPE-derived compounds were able to significantly inhibit 5-lipoxygenase (5-LO), however FAPE-derived compounds were largely ineffective 5-LO inhibitors. Molecular docking revealed new hydrogen bonds and π-π interactions between the enzyme and some of the investigated compounds. Overall, this work highlights the relevance of exploring polyphenolic compounds in cancer models and provides additional leads in the development of novel therapeutic strategies in gliomas.


Subject(s)
Caffeic Acids/chemical synthesis , Caffeic Acids/pharmacology , Coumaric Acids/chemical synthesis , Coumaric Acids/pharmacology , Leukotrienes/biosynthesis , Phenylethyl Alcohol/analogs & derivatives , Arachidonate 5-Lipoxygenase/metabolism , Caffeic Acids/chemistry , Cell Death/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Coumaric Acids/chemistry , HEK293 Cells , Humans , Imaging, Three-Dimensional , Ligands , Lipoxygenase Inhibitors/pharmacology , Molecular Docking Simulation , Phenylethyl Alcohol/chemical synthesis , Phenylethyl Alcohol/chemistry , Phenylethyl Alcohol/pharmacology , Thermodynamics
13.
Chem Biol Drug Des ; 89(4): 514-528, 2017 04.
Article in English | MEDLINE | ID: mdl-27717142

ABSTRACT

Leukotrienes (LTs) are a class of lipid mediators implicated in numerous inflammatory disorders. Caffeic acid phenethyl ester (CAPE) possesses potent anti-LTs activity through the inhibition of 5-lipoxygenase (5-LO), the key enzyme in the biosynthesis of LTs. In this study, we describe the design and synthesis of CAPE analogs as radical scavengers and 5-LO inhibitors. Caffeic esters bearing propargyl and allyl linkers between the caffeoyl and aryl moieties (4a-i and 5a-i, respectively) were synthesized by Sonogashira and Heck cross-coupling reactions to probe the effects of flexibility and aryl substitution on 5-LO inhibition. Caffeoyl alcohol and ethers (6, 7a-b) as well as caffeoyl aldehyde and ketones (8a-e) were synthesized to elucidate the importance of the ester linkage for inhibitory activity. All tested compounds proved to be good radical scavengers (IC50 of 10-30 µm). After preliminary anti-LTs activity screening in HEK293 cell models, 5-LO inhibition potential of selected compounds was determined in human polymorphonuclear leukocytes (PMNL). Most screened compounds outperformed CAPE 3 in concentration-dependent assays on PMNL, with ester dimers 4i and 5i along with caffeoyl ethers 7a-b being roughly eight-, seven-, and 16-fold more potent than Zileuton, with IC50 values of 0.36, 0.43, and 0.18 µm, respectively.


Subject(s)
Caffeic Acids/pharmacology , Lipoxygenase Inhibitors/pharmacology , Phenylethyl Alcohol/analogs & derivatives , Caffeic Acids/chemistry , Carbon-13 Magnetic Resonance Spectroscopy , Free Radical Scavengers/pharmacology , HEK293 Cells , Humans , Lipoxygenase Inhibitors/chemistry , Mass Spectrometry , Molecular Docking Simulation , Neutrophils/drug effects , Phenylethyl Alcohol/chemistry , Phenylethyl Alcohol/pharmacology , Proton Magnetic Resonance Spectroscopy , Structure-Activity Relationship , Thapsigargin/pharmacology
14.
J Lipid Res ; 57(10): 1821-1830, 2016 10.
Article in English | MEDLINE | ID: mdl-27538823

ABSTRACT

Alkyne and azide analogs of natural compounds that can be coupled to sensitive tags by click chemistry are powerful tools to study biological processes. Arachidonic acid (AA) is a FA precursor to biologically active compounds. 19-Alkyne-AA (AA-alk) is a sensitive clickable AA analog; however, its use as a surrogate to study AA metabolism requires further evaluation. In this study, AA-alk metabolism was compared with that of AA in human cells. Jurkat cell uptake of AA was 2-fold greater than that of AA-alk, but significantly more AA-Alk was elongated to 22:4. AA and AA-alk incorporation into and remodeling between phospholipid (PL) classes was identical indicating equivalent CoA-independent AA-PL remodeling. Platelets stimulated in the pre-sence of AA-alk synthesized significantly less 12-lipoxygenase (12-LOX) and cyclooxygenase products than in the presence of AA. Ionophore-stimulated neutrophils produced significantly more 5-LOX products in the presence of AA-alk than AA. Neutrophils stimulated with only exogenous AA-alk produced significantly less 5-LOX products compared with AA, and leukotriene B4 (LTB4)-alk was 12-fold less potent at stimulating neutrophil migration than LTB4, collectively indicative of weaker leukotriene B4 receptor 1 agonist activity of LTB4-alk. Overall, these results suggest that the use of AA-alk as a surrogate for the study of AA metabolism should be carried out with caution.


Subject(s)
Arachidonate 12-Lipoxygenase/metabolism , Arachidonate 5-Lipoxygenase/metabolism , Arachidonic Acids , Click Chemistry , Neutrophils/metabolism , Phospholipids/metabolism , Arachidonic Acids/chemical synthesis , Arachidonic Acids/pharmacokinetics , Arachidonic Acids/pharmacology , Humans , Jurkat Cells , Neutrophils/cytology
15.
Int J Med Chem ; 2014: 931756, 2014.
Article in English | MEDLINE | ID: mdl-25383225

ABSTRACT

5-Lipoxygenase (5-LO) is the key enzyme responsible for the conversion of arachidonic acid to leukotrienes, a class of lipid mediators implicated in inflammatory disorders. In this paper, we describe the design, synthesis, and preliminary activity studies of novel clicked caffeic esters and amides as radical scavengers and 5-LO inhibitors. From known 5-LO inhibitor 3 as a lead, cinnamic esters 8a-h and amides 9a-h as well as caffeic esters 15a-h and amides 16a-h were synthesized by Cu(I)-catalyzed [1,3]-dipolar cycloaddition with the appropriate azide precursors and terminal alkynes. All caffeic analogs are proved to be good radical scavengers (IC50: 10-20 µM). Esters 15g and 15f possessed excellent 5-LO inhibition activity in HEK293 cells and were equipotent with the known 5-LO inhibitor CAPE and more potent than Zileuton. Several synthesized esters possess activities rivaling Zileuton in stimulated human polymorphonuclear leukocytes.

16.
Eur J Med Chem ; 46(9): 4010-24, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21703734

ABSTRACT

A series of bis- and mono-benzonitrile or phenyl analogues of letrozole 1, bearing (1,2,3 and 1,2,5)-triazole or imidazole, were synthesized and screened for their anti-aromatase activities. The unsubstituted 1,2,3-triazole 10a derivative displayed inhibitory activity comparable with that of the aromatase inhibitor, letrozole 1. Compound 10a, bearing a 1,2,3-triazole, is also 10000-times more tightly binding than the corresponding analogue 25 bearing a 1,2,5-triazole, which confirms the importance of a nitrogen atom at position 3 or 4 of the 5-membered ring needed for high activity. The effect on human epithelial adrenocortical carcinoma cell line (H295R) proliferation was also evaluated. The compound 10j (IC(50) = 4.64 µM), a letrozole 1 analogue bearing para-cyanophenoxymethylene-1,2,3-triazole decreased proliferation rates of H295R cells by 76 and 99% in 24 and 72 h respectively. Computer calculations, using quantum ab initio structures, suggest a possible correlation between anti-aromatase activity and the distance between the nitrogen in position 3 or 4 of triazole nitrogen and the cyano group nitrogen.


Subject(s)
Aromatase Inhibitors/chemical synthesis , Aromatase Inhibitors/pharmacology , Nitriles/chemical synthesis , Nitriles/pharmacology , Triazoles/chemistry , Aromatase Inhibitors/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Computer Simulation , Humans , Inhibitory Concentration 50 , Letrozole , Magnetic Resonance Spectroscopy , Mass Spectrometry , Nitriles/chemistry , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/pharmacology
17.
Bioorg Med Chem Lett ; 19(4): 1118-21, 2009 Feb 15.
Article in English | MEDLINE | ID: mdl-19152786

ABSTRACT

Novel cinnamoyl and caffeoyl clusters were synthesized by multiple Cu(I)-catalyzed [1,3]-dipolar cycloadditions and their anti-5-lipoxygenase inhibitory activity was tested. Caffeoyl cluster showed an improved 5-lipoxygenase inhibitory activity compared to caffeic acid, with caffeoyl trimer 16 and tetramer 19 showing the best 5-lipoxygenase inhibitory activity.


Subject(s)
Caffeic Acids/chemical synthesis , Cinnamates/chemical synthesis , Lipoxygenase Inhibitors , Lipoxygenase Inhibitors/chemical synthesis , Triazoles/chemical synthesis , Caffeic Acids/chemistry , Caffeic Acids/pharmacology , Cinnamates/chemistry , Cinnamates/pharmacology , Combinatorial Chemistry Techniques , Drug Design , Lipoxygenase Inhibitors/chemistry , Lipoxygenase Inhibitors/pharmacology , Molecular Structure , Structure-Activity Relationship , Triazoles/chemistry , Triazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...