Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38168384

ABSTRACT

Human infants are born to breastfeed. While 50% of lactating persons struggle to make enough milk, there are no governmentally-approved drugs to enhance lactation1. Here, we engineer a variant of the naturally-occurring driver of lactation, the hormone Prolactin, to increase its serum half-life and produce a viable drug candidate. Our engineered variant, Prolactin-eXtra Long-acting (Prolactin-XL), is comprised of endogenously active human prolactin fused to an engineered human IgG Fc domain designed to overcome the unique drug development challenges specific to the lactating person-infant dyad. Our Prolactin-XL has a serum half-life of 70.9h in mice, 2,625-fold longer than endogenously active prolactin alone (70.9h v. 0.027h). We demonstrate that Prolactin-XL increases milk production and restores growth of pups fed by dams with pharmacologically-ablated lactation. We show that Prolactin-XL-enhanced lactation is accompanied by reversible, lactocyte-driven changes in mammary gland morphology. This work establishes long-acting prolactins as a potentially powerful pharmacologic means to combat insufficient lactation.

2.
Nat Rev Genet ; 22(11): 730-746, 2021 11.
Article in English | MEDLINE | ID: mdl-34234299

ABSTRACT

Synthetic biology seeks to redesign biological systems to perform novel functions in a predictable manner. Recent advances in bacterial and mammalian cell engineering include the development of cells that function in biological samples or within the body as minimally invasive diagnostics or theranostics for the real-time regulation of complex diseased states. Ex vivo and in vivo cell-based biosensors and therapeutics have been developed to target a wide range of diseases including cancer, microbiome dysbiosis and autoimmune and metabolic diseases. While probiotic therapies have advanced to clinical trials, chimeric antigen receptor (CAR) T cell therapies have received regulatory approval, exemplifying the clinical potential of cellular therapies. This Review discusses preclinical and clinical applications of bacterial and mammalian sensing and drug delivery platforms as well as the underlying biological designs that could enable new classes of cell diagnostics and therapeutics. Additionally, we describe challenges that must be overcome for more rapid and safer clinical use of engineered systems.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Synthetic Biology/methods , Animals , Bacteria , Cell-Free System , Humans , Immunomodulation , Mammals , Microbiota , Neoplasms/therapy , Pathology, Molecular/methods , Receptors, Antigen, T-Cell/therapeutic use , Receptors, Chimeric Antigen/therapeutic use , T-Lymphocytes/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...