Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Poult Sci ; 97(6): 2218-2229, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29514309

ABSTRACT

The objective of this study was to discover the relationship between the ultrasound probe treatment (UPT) on egg white proteins (EWPs) before EWPs hydrolysis by different proteases, and the functional properties of the obtained hydrolysates. To fulfill this goal, the protein solubility, foaming, and emulsifying properties were studied as a function of the UPT time and then related to the surface characteristics and structural properties. The changes in the hydrolysates microstructures and macromolecular conformation, induced by the UPT, were followed using scanning electron microscope analyzis (SEM) and Fourier transforms infrared spectroscopy (FTIR). The results showed that UPT influenced (P < 0.05) the proteolysis of egg white proteins for all examined treatment times. Alcalase hydrolysates (AHs) and papain hydrolysates (PHs) were found to have a higher solubility, as a consequence of their relatively higher foaming, and emulsifying properties compared to the untreated hydrolysates. The changes in surface hydrophobicity, sulfhydryl content and surface charge of AHs and PHs indicated unfolding of EWPs affected by ultrasound. SEM analyzis showed that UPT destroyed the microstructures of AHs and PHs, while FTIR spectra indicated remarkable changes in the macromolecular conformation of AHs and PHs after UPT. This study revealed that by combining ultrasound pre-hydrolysis treatment under controlled conditions with thoughtful proteases selection, hydrolysates with improved functional properties could be produced, enhancing utilization of EWPs in food products.


Subject(s)
Avian Proteins/chemistry , Egg Proteins/chemistry , Papain/chemistry , Protein Hydrolysates/chemistry , Subtilisins/chemistry , Ultrasonography/instrumentation , Ultrasonography/methods , Animals , Chickens , Microscopy, Electron, Scanning/veterinary , Spectroscopy, Fourier Transform Infrared/veterinary
2.
J Food Sci ; 81(11): C2664-C2675, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27680882

ABSTRACT

The impact of ultrasound waves generated by probe-type sonicator and ultrasound cleaning bath on egg white protein susceptibility to hydrolysis by alcalase compared to both thermal pretreatment and conventional enzymatic hydrolysis was quantitatively investigated. A series of hydrolytic reactions was carried out in a stirred tank reactor at different substrate concentrations, enzyme concentrations, and temperatures using untreated, and pretreated egg white proteins (EWPs). The kinetic model based on substrate inhibition and second-order enzyme deactivation successfully predicts the experimental behavior providing an effective tool for comparison and optimization. The ultrasound pretreatments appear to greatly improve the enzymatic hydrolysis of EWPs under different conditions when compare to other methods. The apparent reaction rate constants for proteolysis (k2 ) are 0.009, 0.011, 0.053, and 0.045 min-1 for untreated EWPs, and those pretreated with heat, probe-type sonicator, and ultrasound cleaning bath technologies, respectively. The ultrasound pretreatment also decreases hydrolysis activation (Ea ) and enzyme deactivation (Ed ) energy, enthalpy (ΔH), and entropy (ΔS) of activation and for the probe-type sonication this decrease is 61.7%, 61.6%, 63.6%, and 32.2%, respectively, but ultrasound has little change in Gibbs free energy value in the temperature range of 318 to 338 K. The content of sulfhydryl groups and ζ potential show a significant increase (P < 0.05) for both applied ultrasound pretreatments and the reduction of particle size distribution are achieved, providing some evidence that the ultrasound causes EWP structural changes affecting the proteolysis rate.

SELECTION OF CITATIONS
SEARCH DETAIL
...