Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-29915669

ABSTRACT

A thorough comparison of five different readouts for reading out a 2 × 2 array of 5 mm × 5 mm position-sensitive solid-state photomultipliers (PS-SSPM) was undertaken. The five readouts include reading out the 20 signals (16 position and 4 timing) individually, two signal multiplexing readouts, and two position decoding readouts. Flood histogram quality, signal-to-noise ratio (SNR) and energy resolution were compared at different bias voltage (27.0 V to 32.0 V, at 0.5 V intervals) and at a fixed temperature of 0 °C by coupling a 6 × 6 array of 1.3 mm × 1.3 mm × 20 mm polished LSO crystals to the center of the PS-SSPM array. The timing resolution was measured at a bias voltage of 31.0 V (optimal bias voltage in terms of flood histogram quality). The best flood histogram quality value and signal-to-noise were 7.3 ± 1.6 and 33.5 ± 3.1, respectively, and were obtained by shaping and digitizing the 16 position signals individually. The capacitive charge-division readout is the simplest readout among the five evaluated but still resulted in good performance with a flood histogram quality value of 3.3 ± 0.4 and a SNR of 18.3 ± 1.3. The average energy resolution and the average timing resolution were 15.2 ± 1.2 % and 8.4 ± 1.6 ns for individual signal readout and 15.9 ± 1.2 % and 8.8 ± 1.3 ns by using the capacitive charge-division readout method. These studies show that for an ultra-high spatial resolution applications using the 2 × 2 PS-SSPM array, reading out the 20 signals individually is necessary; whilst the capacitive charge-division readout is a cost-effective readout for less demanding applications.

2.
IEEE Trans Nucl Sci ; 60(5): 3188-3197, 2013 Oct.
Article in English | MEDLINE | ID: mdl-25558081

ABSTRACT

A capacitive charge-division readout method for reading out a 2 × 2 array of 5 mm × 5 mm position-sensitive solid-state photomultipliers (PS-SSPM) was designed and evaluated. Using this analog multiplexing method, the 20 signals (16 position, 4 timing) from the PS-SSPM array are reduced to 5 signals (4 position, 1 timing), allowing the PS-SSPM array to be treated as an individual large-area PS-SSPM module. A global positioning approach can now be used, instead of individual positioning for each PS-SSPM in the array, ensuring that the entire light signal is utilized. The signal-to-noise ratio (SNR) and flood histogram quality at different bias voltages (27.5 V to 32.0 V at 0.5 V intervals) and a fixed temperature of 0 °C were evaluated by coupling a 6 × 6 array of 1.3 mm × 1.3 mm × 20 mm polished LSO crystals to the center of the PS-SSPM array. The timing resolution was measured at a fixed bias voltage of 31.0 V and a fixed temperature of 0 °C. All the measurements were evaluated and compared using capacitors with different values and tolerances. Capacitor values ranged from 0.051 nf to 10 nf, and the capacitance tolerance ranged from 1% to 20%. The results show that better performance was achieved using capacitors with smaller values and better capacitance tolerance. Using 0.2 nf capacitors, the SNR, energy resolution and timing resolution were 24.3, 18.2% and 8.8 ns at a bias voltage 31.0 V, respectively. The flood histogram quality was also evaluated by using a 10 × 10 array of 1 mm × 1 mm × 10 mm polished LSO crystals and a 10 × 10 array of 0.7 mm × 0.7 mm × 20 mm unpolished LSO crystals to determine the smallest crystal size resolvable. These studies showed that the high spatial resolution of the PS-SSPM was preserved allowing for 0.7 mm crystals to be identified. These results show that the capacitive charge-division analog signal processing method can significantly reduce the number of electronic channels, from 20 to 5, while retaining the excellent performance of the detector.

3.
Phys Med Biol ; 57(24): 8119-34, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23172720

ABSTRACT

This paper evaluates the performance of two large-area position-sensitive solid-state photomultipliers (PS-SSPM) for use in small animal PET detector designs. Both PS-SSPM device designs are 1 cm² in area, the first being a 2 × 2 tiled array of 5 mm × 5 mm PS-SSPMs and the second being a 10 mm × 10 mm continuous PS-SSPM. Signal-to-noise measurements were performed to investigate the optimal operating parameters for each device and to compare the performance of the two PS-SSPM designs. A maximum signal-to-noise ratio of 29.3 was measured for the 5 mm PS-SSPM array and 15.1 for the 10 mm PS-SSPM, both measurements were made at 0 °C and at the optimal bias voltage. The best energy resolution measured with an array of 1.3 mm polished LSO crystals was 16% for the 5 mm PS-SSPM array and 18% for the 10 mm PS-SSPM. The timing properties of both devices were similar, with a best timing resolution (in coincidence with an LSO/PMT detector) of 6.8 ns (range 6.8-8.9 ns) and 7.1 ns (range 7.1-9.6 ns) for the 5 mm PS-SSPM and 10 mm PS-SSPM respectively. The 2 × 2 array of 5 mm PS-SSPMs was able to visually resolve the elements in an 0.5 × 0.5 × 20 mm LYSO scintillator array (unpolished, diffuse reflector) with an average peak-to-valley ratio in the flood histograms of ∼11 indicating clear separation of the crystals. Advantages and drawbacks of PET detector designs using PS-SSPM photodetectors are addressed and comparisons to other small-animal PET detector designs using position-sensitive avalanche photodiodes are made.


Subject(s)
Light , Positron-Emission Tomography/instrumentation , Animals , Signal-To-Noise Ratio , Time Factors
4.
Phys Med Biol ; 56(19): 6327-36, 2011 Oct 07.
Article in English | MEDLINE | ID: mdl-21896961

ABSTRACT

After many years of development, position-sensitive avalanche photodiodes (PSAPDs) are now being incorporated into a range of scintillation detector systems, including those used in high-resolution small-animal PET and PET/MR scanners. In this work, the signal, noise, signal-to-noise ratio (SNR), flood histogram and timing resolution were measured for lutetium oxyorthosilicate (LSO) scintillator arrays coupled to PSAPDs ranging in size from 10 to 20 mm, and the optimum bias voltage and working temperature were determined. Variations in the SNR performance of PSAPDs with the same dimensions were small, but the SNR decreased significantly with increasing PSAPD size and increasing temperature. Smaller PSAPDs (10 mm and 15 mm in width) produced acceptable flood histograms at 24 °C, and cooling lower than 16 °C produced little improvement. The optimum bias voltage was about 25 V below the break down voltage. The larger 20 mm PSAPDs have lower SNR and require cooling to 0-7 °C for acceptable performance. The optimum bias voltage is also lower (35 V or more below the break down voltage depending on the temperature). Significant changes in the timing resolution were observed as the bias voltage and temperature varied. Higher bias voltages provided better timing resolution. The best timing resolution obtained for individual crystals was 2.8 ns and 3.3 ns for the 10 mm and 15 mm PSAPDs, respectively. The results of this work provide useful guidance for selecting the bias voltage and working temperature for scintillation detectors that incorporate PSAPDs as the photodetector.


Subject(s)
Electronics/instrumentation , Lutetium/chemistry , Positron-Emission Tomography/instrumentation , Silicates/chemistry , Transducers , Animals , Electronics/methods , Humans , Photometry/instrumentation , Photometry/methods , Positron-Emission Tomography/methods , Sensitivity and Specificity , Signal-To-Noise Ratio , Temperature , Time Factors
5.
Phys Med Biol ; 56(1): 139-53, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-21119228

ABSTRACT

By using detectors with good depth encoding accuracy (∼2 mm), an animal PET scanner can be built with a small ring diameter and thick crystals to simultaneously obtain high spatial resolution and high sensitivity. However, there will be large wedge-shaped gaps between detector modules in such a scanner if traditional cuboid crystal arrays are used in a polygonal arrangement. The gaps can be minimized by using tapered scintillator arrays enabling the sensitivity of the scanner to be further improved. In this work, tapered lutetium oxyorthosilicate (LSO) arrays with different crystal dimensions and different combinations of inter-crystal reflector and crystal surface treatments were manufactured and their performance was evaluated. Arrays were read out from both ends by position-sensitive avalanche photodiodes (PSAPDs). In the optimal configuration, arrays consisting of 0.5 mm LSO elements could be clearly resolved and a depth of interaction resolution of 2.6 mm was obtained for a 20 mm thick array. For this tapered array, the intrinsic spatial is degraded from 0.67 to 0.75 mm compared to a standard cuboidal array with similar dimensions, while the increase in efficiency is 41%. Tapered scintillator arrays offer the prospect of improvements in sensitivity and sampling for small-bore scanners, without large increases in manufacturing complexity.


Subject(s)
Lutetium , Positron-Emission Tomography/instrumentation , Silicates , Animals , Equipment Design , Lutetium/chemistry , Positron-Emission Tomography/methods , Reproducibility of Results , Sensitivity and Specificity , Silicates/chemistry
6.
Phys Med Biol ; 54(2): 433-45, 2009 Jan 21.
Article in English | MEDLINE | ID: mdl-19098356

ABSTRACT

Many laboratories develop depth-encoding detectors to improve the trade-off between spatial resolution and sensitivity in positron emission tomography (PET) scanners. One challenge in implementing these detectors is the need to calibrate the depth of interaction (DOI) response for the large numbers of detector elements in a scanner. In this work, we evaluate two different methods, a linear detector calibration and a linear crystal calibration, for determining DOI calibration parameters. Both methods can use measurements from any source distribution and location, or even the intrinsic lutetium oxyorthosilicate (LSO) background activity, and are therefore well suited for use in a depth-encoding PET scanner. The methods were evaluated by measuring detector and crystal DOI responses for all eight detectors in a prototype depth-encoding PET scanner. The detectors utilize dual-ended readout of LSO scintillator arrays with position-sensitive avalanche photodiodes (PSAPDs). The LSO arrays have 7 x 7 elements, with a crystal size of 0.92 x 0.92 x 20 mm(3) and pitch of 1.0 mm. The arrays are read out by two 8 x 8 mm(2) area PSAPDs placed at opposite ends of the arrays. DOI is measured by the ratio of the amplitude of the total energy signals measured by the two PSAPDs. Small variations were observed in the DOI responses of different crystals within an array as well as DOI responses for different arrays. A slightly nonlinear dependence of the DOI ratio on depth was observed and the nonlinearity was larger for the corner and edge crystals. The DOI calibration parameters were obtained from the DOI responses measured in a singles mode. The average error between the calibrated DOI and the known DOI was 0.8 mm if a linear detector DOI calibration was used and 0.5 mm if a linear crystal DOI calibration was used. A line source phantom and a hot rod phantom were scanned on the prototype PET scanner. DOI measurement significantly improved the image spatial resolution no matter which DOI calibration method was used. A linear crystal DOI calibration provided slightly better image spatial resolution compared with a linear detector DOI calibration.


Subject(s)
Positron-Emission Tomography/instrumentation , Animals , Biomedical Engineering , Biophysical Phenomena , Humans , Phantoms, Imaging , Positron-Emission Tomography/statistics & numerical data , Sensitivity and Specificity
7.
IEEE Trans Nucl Sci ; 56(3): 574-580, 2009 Jun 16.
Article in English | MEDLINE | ID: mdl-21072320

ABSTRACT

A magnetic resonance (MR) compatible positron emission tomography (PET) insert has been developed in our laboratory for simultaneous small animal PET/MR imaging. This system is based on lutetium oxyorthosilicate (LSO) scintillator arrays with position-sensitive avalanche photodiode (PSAPD) photodetectors. The PET performance of this insert has been measured. The average reconstructed image spatial resolution was 1.51 mm. The sensitivity at the center of the field of view (CFOV) was 0.35%, which is comparable to the simulation predictions of 0.40%. The average photopeak energy resolution was 25%. The scatter fraction inside the MRI scanner with a line source was 12% (with a mouse-sized phantom and standard 35 mm Bruker 1H RF coil), 7% (with RF coil only) and 5% (without phantom or RF coil) for an energy window of 350-650 keV. The front-end electronics had a dead time of 390 ns, and a trigger extension dead time of 7.32 µs that degraded counting rate performance for injected doses above ~0.75 mCi (28 MBq). The peak noise-equivalent count rate (NECR) of 1.27 kcps was achieved at 290 µCi (10.7 MBq). The system showed good imaging performance inside a 7-T animal MRI system; however improvements in data acquisition electronics and reduction of the coincidence timing window are needed to realize improved NECR performance.

8.
J Nucl Med ; 49(7): 1132-40, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18552140

ABSTRACT

UNLABELLED: Detectors with depth-encoding allow a PET scanner to simultaneously achieve high sensitivity and high spatial resolution. METHODS: A prototype PET scanner, consisting of depth-encoding detectors constructed by dual-ended readout of lutetium oxyorthosilicate (LSO) arrays with 2 position-sensitive avalanche photodiodes (PSAPDs), was developed. The scanner comprised 2 detector plates, each with 4 detector modules, and the LSO arrays consisted of 7 x 7 elements, with a crystal size of 0.9225 x 0.9225 x 20 mm and a pitch of 1.0 mm. The active area of the PSAPDs was 8 x 8 mm. The performance of individual detector modules was characterized. A line-source phantom and a hot-rod phantom were imaged on the prototype scanner in 2 different scanner configurations. The images were reconstructed using 20, 10, 5, 2, and 1 depth-of-interaction (DOI) bins to demonstrate the effects of DOI resolution on reconstructed image resolution and visual image quality. RESULTS: The flood histograms measured from the sum of both PSAPD signals were only weakly depth-dependent, and excellent crystal identification was obtained at all depths. The flood histograms improved as the detector temperature decreased. DOI resolution and energy resolution improved significantly as the temperature decreased from 20 degrees C to 10 degrees C but improved only slightly with a subsequent temperature decrease to 0 degrees C. A full width at half maximum (FWHM) DOI resolution of 2 mm and an FWHM energy resolution of 15% were obtained at a temperature of 10 degrees C. Phantom studies showed that DOI measurements significantly improved the reconstructed image resolution. In the first scanner configuration (parallel detector planes), the image resolution at the center of the field of view was 0.9-mm FWHM with 20 DOI bins and 1.6-mm FWHM with 1 DOI bin. In the second scanner configuration (detector planes at a 40 degrees angle), the image resolution at the center of the field of view was 1.0-mm FWHM with 20 DOI bins and was not measurable when using only 1 bin. CONCLUSION: PET scanners based on this detector design offer the prospect of high and uniform spatial resolution (crystal size, approximately 1 mm; DOI resolution, approximately 2 mm), high sensitivity (20-mm-thick detectors), and compact size (DOI encoding permits detectors to be tightly packed around the subject and minimizes number of detectors needed).


Subject(s)
Positron-Emission Tomography/instrumentation , Equipment Design/instrumentation , Lutetium , Phantoms, Imaging , Silicates , Temperature
9.
Phys Med Biol ; 51(9): 2131-42, 2006 May 07.
Article in English | MEDLINE | ID: mdl-16625031

ABSTRACT

We explore dual-ended read out of LSO arrays with two position sensitive avalanche photodiodes (PSAPDs) as a high resolution, high efficiency depth-encoding detector for PET applications. Flood histograms, energy resolution and depth of interaction (DOI) resolution were measured for unpolished LSO arrays with individual crystal sizes of 1.0, 1.3 and 1.5 mm, and for a polished LSO array with 1.3 mm pixels. The thickness of the crystal arrays was 20 mm. Good flood histograms were obtained for all four arrays, and crystals in all four arrays can be clearly resolved. Although the amplitude of each PSAPD signal decreases as the interaction depth moves further from the PSAPD, the sum of the two PSAPD signals is essentially constant with irradiation depth for all four arrays. The energy resolutions were similar for all four arrays, ranging from 14.7% to 15.4%. A DOI resolution of 3-4 mm (including the width of the irradiation band which is approximately 2 mm) was obtained for all the unpolished arrays. The best DOI resolution was achieved with the unpolished 1 mm array (average 3.5 mm). The DOI resolution for the 1.3 mm and 1.5 mm unpolished arrays was 3.7 and 4.0 mm respectively. For the polished array, the DOI resolution was only 16.5 mm. Summing the DOI profiles across all crystals for the 1 mm array only degraded the DOI resolution from 3.5 mm to 3.9 mm, indicating that it may not be necessary to calibrate the DOI response separately for each crystal within an array. The DOI response of individual crystals in the array confirms this finding. These results provide a detailed characterization of the DOI response of these PSAPD-based PET detectors which will be important in the design and calibration of a PET scanner making use of this detector approach.


Subject(s)
Image Enhancement/instrumentation , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/instrumentation , Positron-Emission Tomography/instrumentation , Transducers , Equipment Design , Equipment Failure Analysis , Image Enhancement/methods , Phantoms, Imaging , Photochemistry/instrumentation , Positron-Emission Tomography/methods , Reproducibility of Results , Semiconductors , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...