Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Eur J Med Chem ; 268: 116255, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38401190

ABSTRACT

Breast cancer (BC) still poses a threat worldwide which demands continuous efforts to present safer and efficacious treatment options via targeted therapy. Beside kinases' aberrations as Aurora B kinase which controls cell division, BC adopts distinct metabolic profiles to meet its high energy demands. Accordingly, targeting both aurora B kinase and/or metabolic vulnerability presents a promising approach to tackle BC. Based on a previously reported indolinone-based Aurora B kinase inhibitor (III), and guided by structural modification and SAR investigation, we initially synthesized 11 sulfonamide-indolinone hybrids (5a-k), which showed differential antiproliferative activities against the NCI-60 cell line panel with BC cells displaying preferential sensitivity. Nonetheless, modest activity against Aurora B kinase (18-49% inhibition) was noted at 100 nM. Screening of a representative derivative (5d) against 17 kinases, which are overexpressed in BC, failed to show significant activity at 1 µM concentration, suggesting that kinase inhibitory activity only played a partial role in targeting BC. Bioinformatic analyses of genome-wide transcriptomics (RNA-sequencing), metabolomics, and CRISPR loss-of-function screens datasets suggested that indolinone-completely responsive BC cell lines (MCF7, MDA-MB-468, and T-47D) were more dependent on mitochondrial oxidative phosphorylation (OXPHOS) compared to partially responsive BC cell lines (MDA-MB-231, BT-549, and HS 578 T). An optimized derivative, TC11, obtained by molecular hybridization of 5d with sunitinib polar tail, manifested superior antiproliferative activity and was used for further investigations. Indeed, TC11 significantly reduced/impaired the mitochondrial respiration, as well as mitochondria-dependent ROS production of MCF7 cells. Furthermore, TC11 induced G0/G1 cell cycle arrest and apoptosis of MCF7 BC cells. Notably, anticancer doses of TC11 did not elicit cytotoxic effects on normal cardiomyoblasts and hepatocytes. Altogether, these findings emphasize the therapeutic potential of targeting the metabolic vulnerability of OXPHOS-dependent BC cells using TC11 and its related sulfonamide-indolinone hybrids. Further investigation is warranted to identify their precise/exact molecular target.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Aurora Kinase B , Oxindoles/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Apoptosis , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Cell Proliferation
2.
Crit Rev Oncol Hematol ; 191: 104139, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37717880

ABSTRACT

FMS-like tyrosine kinase 3 (FLT3) mutations occur in almost 30% of acute myeloid leukemia (AML) patients. Despite the initial clinical efficacy of FLT3 inhibitors, many treated AML patients with mutated FLT3 eventually relapse. This review critically discusses the opportunities and challenges of FLT3-targeted therapies and sheds light on their drug interactions as well as potential biomarkers. Furthermore, we focus on the molecular mechanisms underlying the resistance of FLT3 internal tandem duplication (FLT3-ITD) AMLs to FLT3 inhibitors alongside novel therapeutic strategies to reverse resistance. Notably, dynamic heterogeneous patterns of clonal selection and evolution contribute to the resistance of FLT3-ITD AMLs to FLT3 inhibitors. Ongoing preclinical research and clinical trials are actively directed towards devising rational "personalized" or "patient-tailored" combinatorial therapeutic regimens to effectively treat patients with FLT3 mutated AML.

3.
Eur J Med Chem ; 247: 115040, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36584632

ABSTRACT

Antibiotic-resistant bacteria represent a serious threat to modern medicine and human life. Only a minority of antibacterial agents are active against Gram-negative bacteria. Hence, the development of novel antimicrobial agents will always be a vital need. In an effort to discover new therapeutics against Gram-negative bacteria, we previously reported a structure-activity-relationship (SAR) study on 1,2-disubstituted benzimidazole derivatives. Compound III showed a potent activity against tolC-mutant Escherichia coli with an MIC value of 2 µg/mL, representing a promising lead for further optimization. Building upon this study, herein, 49 novel benzimidazole compounds were synthesized to investigate their antibacterial activity against Gram-negative bacteria. Our design focused on three main goals, to address the low permeability of our compounds and improve their cellular accumulation, to expand the SAR study to the unexplored ring C, and to optimize the lead compound (III) by modification of the methanesulfonamide moiety. Compounds (25a-d, 25f-h, 25k, 25l, 25p, 25r, 25s, and 26b) exhibited potent activity against tolC-mutant E. coli with MIC values ranging from 0.125 to 4 µg/mL, with compound 25d displaying the highest potency among the tested compounds with an MIC value of 0.125 µg/mL. As its predecessor, III, compound 25d exhibited an excellent safety profile without any significant cytotoxicity to mammalian cells. Time-kill kinetics assay indicated that 25d exhibited a bacteriostatic activity and significantly reduced E. coli JW55031 burden as compared to DMSO. Additionally, combination of 25d with colistin partially restored its antibacterial activity against Gram-negative bacterial strains (MIC values ranging from 4 to 16 µg/mL against E. coli BW25113, K. pneumoniae, A. baumannii, and P. aeruginosa). Furthermore, formulation of III and 25d as lipidic nanoparticles (nanocapsules) resulted in moderate enhancement of their antibacterial activity against Gram-negative bacterial strains (A. Baumannii, N. gonorrhoeae) and compound 25d demonstrated superior activity to the lead compound III. These findings establish compound 25d as a promising candidate for treatment of Gram-negative bacterial infections and emphasize the potential of nano-formulations in overcoming poor cellular accumulation in Gram-negative bacteria where further optimization and investigation are warranted to improve the potency and broaden the spectrum of our compounds.


Subject(s)
Anti-Infective Agents , Escherichia coli , Animals , Humans , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria , Benzimidazoles/pharmacology , Pseudomonas aeruginosa , Microbial Sensitivity Tests , Gram-Positive Bacteria , Mammals
4.
Biochem Pharmacol ; 206: 115316, 2022 12.
Article in English | MEDLINE | ID: mdl-36283444

ABSTRACT

Targeting endoplasmic reticulum (ER) stress presents a promising strategy in cancer therapy. We previously reported a series of 1,2,4-oxadiazole derivatives that induced the degradation of EGFR and c-Met which are implicated in tumorigenesis. Based on our previous SAR studies, herein, we report the discovery of EMD37, a novel 1,2,4-oxadiazole derivative, which demonstrated potent anticancer activity against NCI-60 cancer cell lines panel compared to its parent/lead compounds. Anti-proliferative assays revealed preferential cytotoxicity of EMD37 on cancer cells compared to normal cells. Delving deeper, we exploited unbiased genome-wide transcriptome profiling of EMD37-treated cancer cells. Gene Ontology and gene set enrichment analyses revealed that EMD37 promoted ER stress and unfolded protein response (UPR) machinery which was confirmed using RT-qPCR. Mining drug signature databases also confirmed the enrichment of the signature of canonical UPR inducers. Knocking down ER stress transcription factors compromised at least partly the anticancer activity of EMD37. Immunoblot analysis showed that EMD37 induced the accumulation of polyubiquitinated proteins and inhibited mTOR signaling. EMD37 induced G2/M cell cycle arrest and apoptosis of human cancer cells. Inhibiting apoptosis evidently abrogated the anticancer efficacy of EMD37. Altogether, this study introduces EMD37 as a novel ER inducer which warrants further investigation as a potentially relevant anti-cancer therapy.


Subject(s)
Endoplasmic Reticulum Stress , Oxadiazoles , Humans , Oxadiazoles/pharmacology , Unfolded Protein Response , Apoptosis , Cell Line, Tumor
5.
Environ Toxicol ; 37(6): 1404-1412, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35212453

ABSTRACT

Oral squamous cell carcinoma (OSCC) represents a clinical challenge due to the lack of effective therapy to improve prognosis. Hippo/Yes-associated protein (YAP) signaling has emerged as a promising therapeutic target for squamous cell carcinoma treatment. In this study, we investigated the antitumor activity and underlying mechanisms of {[N-(4-(5-(3-(3-(4-acetamido-3-(trifluoromethyl)phenyl)ureido)phenyl)-1,2,4-oxadiazol-3-yl)-3-chlorophenyl)-nicotinamide]} (ATN), a novel YAP inhibitor, in OSCC cells. ATN exhibited differential antiproliferative efficacy against OSCC cells (IC50 as low as 0.29 µM) versus nontumorigenic human fibroblast cells (IC50  = 1.9 µM). Moreover, ATN effectively suppressed the expression of YAP and YAP-related or downstream targets, including Akt, p-AMPK, c-Myc, and cyclin D1, which paralleled the antiproliferative efficacy of ATN. Supporting the roles of YAP in regulating cancer cell survival and migration, ATN not only induced caspase-dependent apoptosis, but also suppressed migration activity in OSCC. Mechanistically, the antitumor activity of ATN in OSCC was attributed, in part, to its ability to regulate Mcl-1 expression. Together, these findings suggest a translational potential of YAP inhibitors, represented by ATN as anticancer therapy for OSCC.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Apoptosis , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Proliferation , Humans , Mouth Neoplasms/pathology , Squamous Cell Carcinoma of Head and Neck , YAP-Signaling Proteins
6.
Bioorg Med Chem ; 56: 116596, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35033885

ABSTRACT

FMS-like tyrosine kinase 3 (FLT3) enzyme overexpression and mutations are the most common molecular abnormalities associated with acute myeloid leukemia (AML). In addition, recent studies investigated the role of tropomyosin receptor kinase A (TrKA) enzyme fusions in promoting AML growth and survival. Based on these premises, targeting both kinases using dual inhibitors would constitute a promising therapeutic approach to target resistant AML. Guided by ligand-based design and structure simplification of the FLT3 inhibitor, quizartinib, we developed a benzimidazole-based small molecule, 4ACP, that exhibited nanomolar activity against wild-type FLT3, FLT3-Internal tandem duplications (FLT3-ITD), and FLT3-D835Y (FLT3-TKD) mutation (IC50 = 43.8, 97.2, and 92.5 nM respectively). Additionally, 4ACP demonstrated potent activity against colon cancer KM12 cell line (IC50 = 358 nM) and subsequent mechanistic deconvolution identified TrKA enzyme as a second plausible target (IC50 = 23.6 nM) for our compound. 4ACP manifested preferential antiproliferative activity against FLT3-ITD positive AML cell lines (MV4-11 IC50 = 38.8 ± 10.7 nM and MOLM-13 IC50 = 54.9 ± 4.1 nM), while lacking activity against FLT3-ITD negative AML cell lines. Western blot analysis confirmed 4ACP ability to downregulate ERK1/2 and mTOR signaling downstream of FLT3-ITD in AML cells. Furthermore, 4ACP prompted apoptotic and necrotic cell death and G0/G1 cell cycle arrest as indicated by cell cycle analysis. 4ACP did not show cytotoxic effects on normal BNL and H9c2 cells and demonstrated decreased activity against c-Kit enzyme, hence, indicating lower probability of synthetic lethal toxicity and a relatively safer profile. In light of these data, 4ACP represents a novel FLT3/TrKA dual kinase inhibitor for targeted therapy of AML.


Subject(s)
Antineoplastic Agents/pharmacology , Benzimidazoles/pharmacology , Drug Discovery , Protein Kinase Inhibitors/pharmacology , Receptor, trkA/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Benzimidazoles/chemical synthesis , Benzimidazoles/chemistry , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Receptor, trkA/metabolism , Structure-Activity Relationship , fms-Like Tyrosine Kinase 3/metabolism
7.
Bioorg Chem ; 117: 105451, 2021 12.
Article in English | MEDLINE | ID: mdl-34736137

ABSTRACT

Aurora B is a pivotal cell cycle regulator where errors in its function results in polyploidy, genetic instability, and tumorigenesis. It is overexpressed in many cancers, consequently, targeting Aurora B with small molecule inhibitors constitutes a promising approach for anticancer therapy. Guided by structure-based design and molecular hybridization approach we developed a series of fifteen indolin-2-one derivatives based on a previously reported indolin-2-one-based multikinase inhibitor (1). Seven derivatives, 5g, 6a, 6c-e, 7, and 8a showed preferential antiproliferative activity in NCI-60 cell line screening and out of these, carbamate 6e and cyclopropylurea 8a derivatives showed optimum activity against Aurora B (IC50 = 16.2 and 10.5 nM respectively) and MDA-MB-468 cells (IC50 = 32.6 ± 9.9 and 29.1 ± 7.3 nM respectively). Furthermore, 6e and 8a impaired the clonogenic potential of MDA-MB-468 cells. Mechanistic investigations indicated that 6e and 8a induced G2/M cell cycle arrest, apoptosis, and necrosis of MDA-MB-468 cells and western blot analysis of 8a effect on MDA-MB-468 cells revealed 8a's ability to reduce Aurora B and its downstream target, Histone H3 phosphorylation. 6e and 8a displayed better safety profiles than multikinase inhibitors such as sunitinib, showing no cytotoxic effects on normal rat cardiomyoblasts and murine hepatocytes. Finally, 8a demonstrated a more selective profile than 1 when screened against ten related kinases. Based on these findings, 8a represents a promising candidate for further development to target breast cancer via Aurora B selective inhibition.


Subject(s)
Antineoplastic Agents/pharmacology , Aurora Kinase B/antagonists & inhibitors , Breast Neoplasms/drug therapy , Indoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Aurora Kinase B/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Indoles/chemical synthesis , Indoles/chemistry , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
8.
Eur J Med Chem ; 199: 112312, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32442851

ABSTRACT

Antimicrobial resistance is an imminent threat worldwide. Methicillin-resistant Staphylococcus aureus (MRSA) is one of the "superbug" family, manifesting resistance through the production of a penicillin binding protein, PBP2a, an enzyme that provides its transpeptidase activity to allow cell wall biosynthesis. PBP2a's low affinity to most ß-lactams, confers resistance to MRSA against numerous members of this class of antibiotics. An Achilles' heel of MRSA, PBP2a represents a substantial target to design novel antibiotics to tackle MRSA threat via inhibition of the bacterial cell wall biosynthesis. In this review we bring into focus the PBP2a enzyme and examine the various aspects related to its role in conferring resistance to MRSA strains. Moreover, we discuss several antibiotics and antimicrobial agents designed to target PBP2a and their therapeutic potential to meet such a grave threat. In conclusion, we consider future perspectives for targeting MRSA infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Penicillin-Binding Proteins/antagonists & inhibitors , Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism , Chemistry, Pharmaceutical , Enzyme Inhibitors/chemistry , Methicillin-Resistant Staphylococcus aureus/enzymology , Microbial Sensitivity Tests , Penicillin-Binding Proteins/metabolism
9.
ACS Med Chem Lett ; 11(4): 426-432, 2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32292545

ABSTRACT

Recent evidence has linked the dysregulation of the Hippo pathway to tumorigenesis and cancer progression due to its pivotal role in regulating the stability of the oncoprotein YAP. Based on an unexpected finding from the SAR study of a recently reported oxadiazole-based EGFR/c-Met dual inhibitor (compound 1), we identified a closely related derivative, compound 2, which exhibited cogent antitumor activities while devoid of compound 1's ability to promote EGFR/c-Met degradation. Compound 2 acted, in part, by facilitating YAP degradation through activation of its upstream kinase LATS1. However, it did not alter the phosphorylation status of MST1/2, a LATS1 kinase, suggesting an alternative mechanism for LATS1 activation. Orally administered compound 2 was effective in suppressing MDA-MB-231 xenograft tumor growth while exhibiting a satisfactory safety profile. From a therapeutic perspective, compound 2 might help foster new therapeutic strategies for cancer treatment by restoring the Hippo pathway regulatory function to facilitate YAP degradation.

10.
Eur J Med Chem ; 186: 111850, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31735572

ABSTRACT

Gram-negative bacteria pose a distinctive risk worldwide, especially with the evolution of major resistance to carbapenems, fluoroquinolones and colistin. Therefore, development of new antibacterial agents to target Gram-negative infections is of utmost importance. Using phenotypic screening, we synthesized and tested thirty-one benzimidazole derivatives against E. coli JW55031 (TolC mutant strain). Compound 6c showed potent activity with MIC value of 2 µg/ml, however, it lacked activity against several Gram-negative microbes with intact efflux systems, including E. coli BW25113 (wild-type strain). Combination of 6c with colistin partially restored its antibacterial activity against wild strains (MIC range, 8-16 µg/ml against E. coli, K. pneumoniae, A. baumannii, and P. aeruginosa). 6c exhibited no cytotoxicity against two mammalian cell lines. Therefore, compound 6c represents a promising lead for further optimization to overcome Gram-negative resistance alone or in combination therapy.


Subject(s)
Anti-Bacterial Agents/pharmacology , Benzimidazoles/pharmacology , Colistin/pharmacology , Gram-Negative Bacteria/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Benzimidazoles/chemical synthesis , Benzimidazoles/chemistry , Colistin/chemistry , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
11.
Eur J Med Chem ; 182: 111607, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31446247

ABSTRACT

Development of small-molecule agents with the ability to facilitate oncoprotein degradation has emerged as a promising strategy for cancer therapy. Since EGFR and c-Met are both implicated in oncogenesis and tumor progression, we initiated a screening program by using an in-house library to identify agents capable of inducing the concomitant suppression of EGFR and c-Met expression, which led to the identification of compound 1, a 1,2,4-oxadiazole derivative. Based on the scaffold of 1, we developed a series of derivatives to assess their efficacies in facilitating the downregulation of EGFR and c-Met, among which compound 48 represented the optimal agent. 48 showed equipotent antiproliferative activity against a panel of five NSCLC cell lines with different EGFR mutational status (IC50 = 0.2-0.6 µM), while the same panel exhibited differential sensitivity to different EGFR kinase inhibitors tested. Cell cycle analysis indicated that the antiproliferative activity of 48 was associated with its ability to cause G2/M arrest and, to a lesser extent, apoptosis. Western blot and RT-PCR analyses revealed that 48 facilitated the downregulation of EGFR and c-Met at the protein level. In vivo data showed that oral administration of 48 was effective in suppressing gefitinib-resistant H1975 xenograft tumor growth in nude mice, and at a suboptimal dose, could sensitize H1975 tumors to gefitinib. Based on these findings, 48 represents a promising candidate for further development to target EGFR TKI-resistant NSCLC via dual inhibition of EGFR and c-Met oncoproteins.


Subject(s)
Antineoplastic Agents/pharmacology , Oxadiazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Down-Regulation/drug effects , Drug Screening Assays, Antitumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Humans , Molecular Structure , Oxadiazoles/chemical synthesis , Oxadiazoles/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-met/metabolism , Structure-Activity Relationship
12.
Basic Clin Pharmacol Toxicol ; 123(1): 21-29, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29394526

ABSTRACT

5' AMP-activated protein kinase enzyme (AMPK), a master regulator of cellular metabolism, is recognized for its association with various metabolic diseases, inflammation and cancer. In this study, we aimed to investigate the role of compound 59, an AMPK activator, in a panel of oral squamous cell carcinoma (OSCC) cell lines. The antiproliferative effects of compound 59 were assessed by MTT assays, flow cytometry, Western blotting, confocal microscopy and transmission electron microscopy. Relative to OSCC cells, normal human oral keratinocytes were almost insensitive to compound 59 treatment. Compound 59 induced apoptosis as indicated by caspase activation and PARP cleavage. In addition, it inhibited JAK/STAT3 signalling, arrested cells in the G1 phase, increased reactive oxygen species (ROS) generation and promoted autophagy. Interestingly, pre-treatment with a protein tyrosine phosphatase (PP2A) inhibitor, cantharidin, partially reversed compound 59-induced down-regulation of p-JAK2 and p-STAT3, thereby suggesting the involvement of a protein tyrosine phosphatase. Together, these findings substantiate the potential of compound 59 for the treatment of OSCC patients.


Subject(s)
Antineoplastic Agents/pharmacology , Benzeneacetamides/pharmacology , Carcinoma, Squamous Cell/drug therapy , Enzyme Activators/pharmacology , Mouth Neoplasms/drug therapy , Pyridines/pharmacology , AMP-Activated Protein Kinases/metabolism , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Autophagy/drug effects , Benzeneacetamides/therapeutic use , Cantharidin/pharmacology , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Survival/drug effects , Down-Regulation , Enzyme Activators/therapeutic use , Humans , Janus Kinase 2/metabolism , Phosphorylation , Protein Phosphatase 2/antagonists & inhibitors , Pyridines/therapeutic use , Reactive Oxygen Species/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects
13.
ChemMedChem ; 10(11): 1915-23, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26350292

ABSTRACT

Previously, we reported the identification of a thiazolidinedione-based adenosine monophosphate activated protein kinase (AMPK) activator, compound 1 (N-[4-({3-[(1-methylcyclohexyl)methyl]-2,4-dioxothiazolidin-5-ylidene}methyl)phenyl]-4-nitro-3-(trifluoromethyl)benzenesulfonamide), which provided a proof of concept to delineate the intricate role of AMPK in regulating oncogenic signaling pathways associated with cell proliferation and epithelial-mesenchymal transition (EMT) in cancer cells. In this study, we used 1 as a scaffold to conduct lead optimization, which generated a series of derivatives. Analysis of the antiproliferative and AMPK-activating activities of individual derivatives revealed a distinct structure-activity relationship and identified 59 (N-(3-nitrophenyl)-N'-{4-[(3-{[3,5-bis(trifluoromethyl)phenyl]methyl}-2,4-dioxothiazolidin-5-ylidene)methyl]phenyl}urea) as the optimal agent. Relative to 1, compound 59 exhibits multifold higher potency in upregulating AMPK phosphorylation in various cell lines irrespective of their liver kinase B1 (LKB1) functional status, accompanied by parallel changes in the phosphorylation/expression levels of p70S6K, Akt, Foxo3a, and EMT-associated markers. Consistent with its predicted activity against tumors with activated Akt status, orally administered 59 was efficacious in suppressing the growth of phosphatase and tensin homologue (PTEN)-null PC-3 xenograft tumors in nude mice. Together, these findings suggest that 59 has clinical value in therapeutic strategies for PTEN-negative cancer and warrants continued investigation in this regard.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Antineoplastic Agents/pharmacology , Enzyme Activators/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Enzyme Activation/drug effects , Enzyme Activators/chemical synthesis , Enzyme Activators/chemistry , Humans , Male , Mice , Mice, Nude , Molecular Docking Simulation , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/enzymology , Neoplasms, Experimental/pathology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
14.
PLoS One ; 7(11): e49284, 2012.
Article in English | MEDLINE | ID: mdl-23185312

ABSTRACT

This study provides a comprehensive computational procedure for the discovery of novel urea-based antineoplastic kinase inhibitors while focusing on diversification of both chemotype and selectivity pattern. It presents a systematic structural analysis of the different binding motifs of urea-based kinase inhibitors and the corresponding configurations of the kinase enzymes. The computational model depends on simultaneous application of two protocols. The first protocol applies multiple consecutive validated virtual screening filters including SMARTS, support vector-machine model (ROC = 0.98), Bayesian model (ROC = 0.86) and structure-based pharmacophore filters based on urea-based kinase inhibitors complexes retrieved from literature. This is followed by hits profiling against different extended electron distribution (XED) based field templates representing different kinase targets. The second protocol enables cancericidal activity verification by using the algorithm of feature trees (Ftrees) similarity searching against NCI database. Being a proof-of-concept study, this combined procedure was experimentally validated by its utilization in developing a novel series of urea-based derivatives of strong anticancer activity. This new series is based on 3-benzylbenzo[d]thiazol-2(3H)-one scaffold which has interesting chemical feasibility and wide diversification capability. Antineoplastic activity of this series was assayed in vitro against NCI 60 tumor-cell lines showing very strong inhibition of GI(50) as low as 0.9 uM. Additionally, its mechanism was unleashed using KINEX™ protein kinase microarray-based small molecule inhibitor profiling platform and cell cycle analysis showing a peculiar selectivity pattern against Zap70, c-src, Mink1, csk and MeKK2 kinases. Interestingly, it showed activity on syk kinase confirming the recent studies finding of the high activity of diphenyl urea containing compounds against this kinase. Allover, the new series, which is based on a new kinase scaffold with interesting chemical diversification capabilities, showed that it exhibits its "emergent" properties by perturbing multiple unexplored kinase pathways.


Subject(s)
Algorithms , Antineoplastic Agents/pharmacology , Drug Discovery , Electrons , Protein Kinase Inhibitors/pharmacology , Urea/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/classification , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Cyclin-Dependent Kinase 2/metabolism , Humans , Inhibitory Concentration 50 , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/metabolism , Ligands , Models, Molecular , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/classification , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Support Vector Machine , Syk Kinase , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...