Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 25(22)2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33238393

ABSTRACT

Chocolate is considered as both caloric and functional food. Its nutritional properties may be improved by addition of fiber; however, this may reduce polyphenols content. The aim of this research was to determine the influence of cocoa shell addition (as a source of fiber) and its combination with different ingredients (cocoa butter equivalents (CBE), emulsifiers, dairy ingredients) on polyphenols of dark and milk chocolates. Total polyphenol (TPC) and total flavonoid (TFC) contents were determined spectrophotometrically, identification and quantification of individual compounds by high pressure liquid chromatography and antioxidant capacity by ferric reducing antioxidant power (FRAP) assay. Results showed that even though addition of cocoa shell to chocolate results in reduced contents of TPC, TFC, and individual compounds, it is not significant compared to ones reported by other authors for commercial chocolates. Other ingredients influence determined values for all investigated parameters; however, additional research is needed to reveal exact mechanisms and implications.


Subject(s)
Cacao/chemistry , Chocolate/analysis , Phytochemicals/chemistry , Antioxidants/analysis , Antioxidants/chemistry , Antioxidants/pharmacology , Chromatography, High Pressure Liquid , Flavonoids/analysis , Phytochemicals/analysis , Phytochemicals/pharmacology , Polyphenols/analysis
2.
Foods ; 9(6)2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32575607

ABSTRACT

Cocoa shell is a by-product of the chocolate industry that is rich in dietary fiber and bioactive components. In this research, the influence of high voltage electric discharge (HVED) treatment on chemical and physical characteristics of the cocoa shell, i.e., the effects of applied time and frequencies on grinding ability, water binding capacity (WBC), dietary fibers and tannin content was investigated. HVED had a significant influence on the chemical and physical properties of cocoa shell, all of which could be linked to changes in fiber properties. Along with the fiber content, grinding ability and water binding capacity were increased. These properties have already been linked to fiber content and soluble/insoluble fiber ratio. However, this research implies that change in fiber properties could be linked to tannin formation via complexation of other polyphenolic components. Additional research is needed to verify this effect and to establish mechanisms of tannin formation induced by HVED and its influence on fiber quantification.

SELECTION OF CITATIONS
SEARCH DETAIL
...