Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-20173120

ABSTRACT

Currently, the number of patients with COVID-19 has significantly increased. Thus, there is an urgent need for developing treatments for COVID-19. Drug repurposing, which is the process of reusing already-approved drugs for new medical conditions, can be a good way to solve this problem quickly and broadly. Many clinical trials for COVID-19 patients using treatments for other diseases have already been in place or will be performed at clinical sites in the near future. Additionally, patients with comorbidities such as diabetes mellitus, obesity, liver cirrhosis, kidney diseases, hypertension, and asthma are at higher risk for severe illness from COVID-19. Thus, the relationship of comorbidity disease with COVID-19 may help to find repurposable drugs. To reduce trial and error in finding treatments for COVID-19, we propose building a network-based drug repurposing framework to prioritize repurposable drugs. First, we utilized knowledge of COVID-19 to construct a disease-gene-drug network (DGDr-Net) representing a COVID-19-centric interactome with components for diseases, genes, and drugs. DGDr-Net consisted of 592 diseases, 26,681 human genes and 2,173 drugs, and medical information for 18 common comorbidities. The DGDr-Net recommended candidate repurposable drugs for COVID-19 through network reinforcement driven scoring algorithms. The scoring algorithms determined the priority of recommendations by utilizing graph-based semi-supervised learning. From the predicted scores, we recommended 30 drugs, including dexamethasone, resveratrol, methotrexate, indomethacin, quercetin, etc., as repurposable drugs for COVID-19, and the results were verified with drugs that have been under clinical trials. The list of drugs via a data-driven computational approach could help reduce trial-and-error in finding treatment for COVID-19.

2.
Article in English | WPRIM (Western Pacific) | ID: wpr-90522

ABSTRACT

OBJECTIVES: Rare disease research requires a broad range of disease-related information for the discovery of causes of genetic disorders that are maladies caused by abnormalities in genes or chromosomes. A rarity in cases makes it difficult for researchers to elucidate definite inception. This knowledge base will be a major resource not only for clinicians, but also for the general public, who are unable to find consistent information on rare diseases in a single location. METHODS: We design a compact database schema for faster querying; its structure is optimized to store heterogeneous data sources. Then, clinicians at Seoul National University Hospital (SNUH) review and revise those resources. Additionally, we integrated other sources to capture genomic resources and clinical trials in detail on the Korean Rare Disease Knowledge base (KRDK). RESULTS: As a result, we have developed a Web-based knowledge base, KRDK, suitable for study of Mendelian diseases that commonly occur among Koreans. This knowledge base is comprised of disease summary and review, causal gene list, laboratory and clinic directory, patient registry, and so on. Furthermore, database for analyzing and giving access to human biological information and the clinical trial management system are integrated on KRDK. CONCLUSIONS: We expect that KRDK, the first rare disease knowledge base in Korea, may contribute to collaborative research and be a reliable reference for application to clinical trials. Additionally, this knowledge base is ready for querying of drug information so that visitors can search a list of rare diseases that is relative to specific drugs. Visitors can have access to KRDK via http://www.snubi.org/software/raredisease/.


Subject(s)
Humans , Databases, Genetic , Information Storage and Retrieval , Knowledge Bases , Korea , Online Systems , Rare Diseases
SELECTION OF CITATIONS
SEARCH DETAIL
...