Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Emerg Infect Dis ; 24(12): 2195-2201, 2018 12.
Article in English | MEDLINE | ID: mdl-30457520

ABSTRACT

We assembled a collection of 73 Capnocytophaga canimorsus isolates obtained from blood cultures taken from patients treated at Helsinki University Hospital (Helsinki, Finland) during 2000-2017. We serotyped these isolates by PCR and Western blot and attempted to correlate pathogen serovar with patient characteristics. Our analyses showed, in agreement with previous research, that 3 C. canimorsus serovars (A-C) caused most (91.8%) human infections, despite constituting only 7.6% of isolates found in dogs. The 3 fatalities that occurred in our cohort were equally represented by these serovars. We found 2 untypeable isolates, which we designated serovars J and K. We did not detect an association between serovar and disease severity, immune status, alcohol abuse, or smoking status, but dog bites occurred more frequently among patients infected with non-A-C serovars. Future research is needed to confirm serovar virulence and develop strategies to reduce risk for these infections in humans.


Subject(s)
Capnocytophaga/classification , Gram-Negative Bacterial Infections/epidemiology , Gram-Negative Bacterial Infections/microbiology , Animal Diseases/epidemiology , Animal Diseases/microbiology , Animals , Capnocytophaga/genetics , Capnocytophaga/immunology , Capnocytophaga/isolation & purification , Cats , Dogs , Finland/epidemiology , Gram-Negative Bacterial Infections/diagnosis , Gram-Negative Bacterial Infections/history , History, 21st Century , Humans , RNA, Ribosomal, 16S/genetics , Serogroup , Severity of Illness Index , Virulence
2.
Emerg Microbes Infect ; 7(1): 124, 2018 Jul 04.
Article in English | MEDLINE | ID: mdl-29970924

ABSTRACT

Capnocytophaga canimorsus is a dog oral commensal bacterium that causes rare but life-threatening generalized infections in humans who have been in contact with its animal hosts. Two other dog commensals, Capnocytophaga canis and Capnocytophaga cynodegmi, cause rare, mild local infections. To date, nine capsular serovars have been described in C. canimorsus. Here, we serotyped 112 strains of Capnocytophaga spp. isolated from human infections. The C. canimorsus strains (86 of 96, 89.6%) belonged to serovars A, B, or C with relative frequencies of approximately 30% for each serovar. The high prevalence of the A, B, and C serovars in strains isolated from humans, compared to the previously described low prevalence of these serovars among dog isolates (7.6%), confirms that these three serovars are more virulent to humans than other serovars and suggests that the low incidence of disease may be linked to the low prevalence of the A, B, and C serovars in dogs. We serotyped six strains of C. canis and ten strains of C. cynodegmi and, surprisingly, found one C. canis and three C. cynodegmi strains to be of capsular serovar B. This observation prompted us to test 34 dog-isolated C. canis and 16 dog-isolated C. cynodegmi strains. We found four C. canis strains belonging to serovar A and one belonging to serovar F. In contrast, no dog-isolated C. cynodegmi strain could be typed with the available antisera. This work demonstrates that virulence-associated capsular polysaccharides (A, B, and C) are not specific to the C. canimorsus species.


Subject(s)
Capnocytophaga/classification , Gram-Negative Bacterial Infections/microbiology , Animals , Antigens, Bacterial/immunology , Bacterial Typing Techniques , Capnocytophaga/immunology , Capnocytophaga/isolation & purification , Capnocytophaga/pathogenicity , Dog Diseases/immunology , Dog Diseases/microbiology , Dogs , Gram-Negative Bacterial Infections/immunology , Humans , Phylogeny , Polymerase Chain Reaction , Polysaccharides, Bacterial/immunology , RNA, Ribosomal, 16S/genetics , Serogroup , Virulence/genetics , Virulence/immunology
3.
J Clin Microbiol ; 55(6): 1902-1914, 2017 06.
Article in English | MEDLINE | ID: mdl-28381610

ABSTRACT

Capnocytophaga canimorsus is a dog oral commensal that causes rare but severe infections in humans. C. canimorsus was recently shown to be endowed with a capsular polysaccharide implicated in resistance to the innate immune system of the host. Here, we developed the first C. canimorsus capsular serotyping scheme. We describe nine different serovars (A to I), and this serotyping scheme allowed typing of 25/25 isolates from human infections but only 18/52 isolates from dog mouths, indicating that the repertoire of capsules in the species is vast. However, while only three serovars (A, B, and C) covered 88% of the human isolates tested (22/25), they covered only 7.7% of the dog isolates (4/52). Serovars A, B, and C were found 22.9-, 14.6-, and 4.2-fold more often, respectively, among human isolates than among dog isolates, with no geographical bias, implying that isolates endowed with these three capsular types are more virulent for humans than other isolates. Capsular serotyping would thus allow identification of virulent isolates in dogs, which could contribute to the prevention of these infections. To this end, we developed a PCR typing method based on the amplification of specific capsular genes.


Subject(s)
Bacterial Typing Techniques/methods , Capnocytophaga/classification , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/veterinary , Polysaccharides, Bacterial/analysis , Serotyping/methods , Virulence Factors/analysis , Animals , Capnocytophaga/isolation & purification , Dogs , Humans
4.
Sci Rep ; 6: 38914, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27974829

ABSTRACT

Capnocytophaga canimorsus is a dog's and cat's oral commensal which can cause fatal human infections upon bites or scratches. Infections mainly start with flu-like symptoms but can rapidly evolve in fatal septicaemia with a mortality as high as 40%. Here we present the discovery of a polysaccharide capsule (CPS) at the surface of C. canimorsus 5 (Cc5), a strain isolated from a fulminant septicaemia. We provide genetic and chemical data showing that this capsule is related to the lipooligosaccharide (LOS) and probably composed of the same polysaccharide units. A CPS was also found in nine out of nine other strains of C. canimorsus. In addition, the genomes of three of these strains, sequenced previously, contain genes similar to those encoding CPS biosynthesis in Cc5. Thus, the presence of a CPS is likely to be a common property of C. canimorsus. The CPS and not the LOS confers protection against the bactericidal effect of human serum and phagocytosis by macrophages. An antiserum raised against the capsule increased the killing of C. canimorsus by human serum thus showing that anti-capsule antibodies have a protective role. These findings provide a new major element in the understanding of the pathogenesis of C. canimorsus.


Subject(s)
Bacterial Capsules/chemistry , Capnocytophaga/chemistry , Lipopolysaccharides/chemistry , Polysaccharides, Bacterial/chemistry , Animals , Antibodies, Bacterial/immunology , Bacterial Capsules/immunology , Capnocytophaga/immunology , Capnocytophaga/pathogenicity , Cats , Dogs , Gram-Negative Bacterial Infections/immunology , Humans , Lipopolysaccharides/immunology , Polysaccharides, Bacterial/immunology
6.
Emerg Microbes Infect ; 4(8): e48, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26421271

ABSTRACT

Capnocytophaga canimorsus are gram-negative bacteria living as commensals in the mouth of dogs and cats. C. canimorsus cause rare but life-threatening generalized infections in humans that have been in contact with a dog or a cat. Over the last years we collected 105 C. canimorsus strains from different geographical origins and from severe human infections or healthy dogs. All these strains were analyzed by 16S rDNA sequencing and a phylogenetic tree revealed two main groups of bacteria instead of one with no relation to the geographical origin. This branching was confirmed by the whole-genome sequencing of 10 strains, supporting the evidence of a new Capnocytophaga species in dogs. Interestingly, 19 out of 19 C. canimorsus strains isolated from human infections belonged to the same species. Furthermore, most strains from this species could grow in heat-inactivated human serum (HIHS) (40/46 tested), deglycosylate IgM (48/66) and were cytochrome-oxidase positive (60/66) while most strains from the other species could not grow in HIHS (22/23 tested), could not deglycosylate IgM (33/34) and were cytochrome-oxidase negative (33/34). Here, we propose to call Capnocytophaga canis (Latin: dog) the novel, presumably less virulent dog-hosted Capnocytophaga species and to keep the name C. canimorsus for the species including human pathogens.


Subject(s)
Capnocytophaga/classification , DNA, Ribosomal/chemistry , Dog Diseases/microbiology , Gram-Negative Bacterial Infections/microbiology , RNA, Ribosomal, 16S/genetics , Animals , Capnocytophaga/enzymology , Capnocytophaga/genetics , Capnocytophaga/pathogenicity , Cats , Consensus Sequence , DNA, Ribosomal/isolation & purification , Dog Diseases/transmission , Dogs , Electron Transport Complex IV/metabolism , Genome, Bacterial/genetics , Genome-Wide Association Study , Gram-Negative Bacterial Infections/transmission , Humans , Immunoglobulin M/metabolism , Phylogeny , Polymerase Chain Reaction/methods , Polymerase Chain Reaction/standards , Polysaccharides/metabolism , Saliva/microbiology , Species Specificity
7.
mBio ; 6(2): e02507, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25736888

ABSTRACT

UNLABELLED: Capnocytophaga canimorsus is known to form two kinds of cells on blood agar plates (coccoid and bacillary), evoking phase variation. When grown in coculture with animal cells these bacteria appeared only as bacilli, but in the presence of vancomycin they were round, indicating that coccoid shapes likely result from weakening of the peptidoglycan layer. Polysaccharide utilization locus 5 (PUL5) and sialidase mutant bacteria, unable to retrieve glycans from glycoproteins, grew less than wild-type bacteria and also appeared polymorphic unless GlcNAc was added, suggesting that C. canimorsus is unable to synthesize GlcNAc, an essential component of peptidoglycan. Accordingly, a genome analysis was conducted and revealed that C. canimorsus strain 5 lacks the GlmM and GlmU enzymes, which convert glucosamine into GlcNAc. Expression of the Escherichia coli GlmM together with the acetyltransferase domain of GlmU allowed PUL5 mutant bacteria to grow normally, indicating that C. canimorsus is a natural auxotroph that relies on GlcNAc harvested from the host N-glycoproteins for peptidoglycan synthesis. Mucin, a heavily O-glycosylated protein abundant in saliva, also rescued growth and the shape of PUL5 mutant bacteria. Utilization of mucin was found to depend on Muc, a Sus-like system encoded by PUL9. Contrary to all known PUL-encoded systems, Muc cleaves peptide bonds of mucin rather than glycosidic linkages. Thus, C. canimorsus has adapted to build its peptidoglycan from the glycan-rich dog's mouth glycoproteins. IMPORTANCE: Capnocytophaga canimorsus is a bacterium that lives as a commensal in the dog mouth and causes severe infections in humans. In vitro, it forms two kinds of cells (coccoid and bacillary), evoking phase variation. Here, we show that cell rounding likely results from weakening of the peptidoglycan layer due to a shortage of N-acetylglucosamine (GlcNAc). C. canimorsus cannot synthesize GlcNAc because of the lack of key enzymes. In its niche, the dog mouth, C. canimorsus retrieves GlcNAc by foraging glycans from salivary mucin and N-linked glycoproteins through two different apparatuses, Muc and Gpd, both of which are related to the Bacteroides starch utilization system. The Muc system is peculiar in the sense that the enzyme of the complex is a protease and not a glycosylhydrolase, as it cleaves peptide bonds in order to capture glycan chains. This study provides a molecular genetic demonstration for the complex adaptation of C. canimorsus to its ecological niche, the oral cavity of dogs.


Subject(s)
Adaptation, Biological , Capnocytophaga/genetics , Capnocytophaga/metabolism , Carbohydrate Metabolism , Metabolic Networks and Pathways/genetics , Mouth/microbiology , Acetylglucosamine/metabolism , Animals , Capnocytophaga/cytology , Capnocytophaga/growth & development , Dogs , Glucosamine/metabolism , Peptidoglycan/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...