Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 14385, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37658127

ABSTRACT

Breeding programs rely on light wavelength, intensity, and photoperiod for rapid success. In this study, we investigated the ability of Ag/ZnO nanoparticles (NPs) to improve the photosynthesis and growth of wheat under simulated full solar spectrum conditions. The world population is increasing rapidly, it is necessary to increase the number of crops in order to ensure the world's food security. Conventional breeding is time-consuming and expensive, so new techniques such as rapid breeding are needed. Rapid breeding shows promise in increasing crop yields by controlling photoperiod and environmental factors in growth regulators. However, achieving optimum growth and photosynthesis rates is still a challenge. Here, we used various methods to evaluate the effects of Ag/ZnO NPs on rice seeds. Using bioinformatics simulations, we evaluated the light-harvesting efficiency of chlorophyll a in the presence of Ag/ZnO NPs. Chemically synthesized Ag/ZnO nanoparticles were applied to rice grains at different concentrations (0-50 mg/L) and subjected to a 12-h preparation time. Evaluation of seed germination rate and growth response in different light conditions using a Light Emitting Diode (LED) growth chamber that simulates a rapid growth system. The analysis showed that the surface plasmon resonance of Ag/ZnO NPs increased 38-fold, resulting in a 160-fold increase in the light absorption capacity of chlorophyll. These estimates are supported by experimental results showing an 18% increase in the yield of rice seeds treated with 15 mg/L Ag/ZnO NPs. More importantly, the treated crops showed a 2.5-fold increase in growth and a 1.4-fold increase in chlorophyll content under the simulated full sun spectrum (4500 lx) and a 16-h light/8-h dark photoperiod. More importantly, these effects are achieved without oxidative or lipid peroxidative damage. Our findings offer a good idea to increase crop growth by improving photosynthesis using Ag/ZnO nanoparticle mixture. To develop this approach, future research should go towards optimizing nanoparticles, investigating the long-term effects, and exploring the applicability of this process in many products. The inclusion of Ag/ZnO NPs in rapid breeding programs has the potential to transform crops by reducing production and increasing agricultural productivity.


Subject(s)
Seedlings , Zinc Oxide , Triticum , Chlorophyll A , Plant Breeding , Photosynthesis , Chlorophyll , Crops, Agricultural
2.
Sci Rep ; 13(1): 10277, 2023 06 24.
Article in English | MEDLINE | ID: mdl-37355717

ABSTRACT

Multiphoton absorbing upconversion nanoparticles are emerging as bioimaging materials but are limited by the low quantum yield of their visible fluorescence. This article contains colloids of graphene quantum dots (GQDs), Neodymium, and Cobalt doped Graphene Quantum dots (Co-GQDs and Nd-GQDs) surrounded by carboxylic acids are synthesized which especially are suitable for bio applications; in this way, carboxylic acid groups exchanged by Amoxicillin as an antibiotic with bactericidal activity. The XRD diffraction method, TEM microscope, UV-Vis, and photoluminescence spectroscopies characterize the synthesized materials. The synthesized Quantum dots (QDs) exhibit upconversion properties and their emission is centered at 480 nm, but a red shift was observed with the increase of the excitation wavelength. In the emission spectra of synthesized QDs that can be related to the defect levels introduced by passivation of the QDs in the structure, the results show that with the interaction of the surface QDs with more carboxylic groups, the redshift is not observed. As the results indicate an increase in the intensity of upconversion emission is recorded for Co-GQDs and Nd-GQDs. The absolute quantum efficiency (QY) for Co-GQDs and Nd-GQDs were determined to be 41% and 100% more than GQDs respectively. DFT calculations indicate a strong bond between graphene and cobalt and Neodymium atoms. In doped materials, there are trap levels between the band gap of the GQDs which are responsible for increasing the intensity of the upconversion phenomenon.


Subject(s)
Graphite , Quantum Dots , Graphite/chemistry , Neodymium , Quantum Dots/chemistry , Cobalt , Fluorescence
3.
Sci Rep ; 12(1): 19934, 2022 11 19.
Article in English | MEDLINE | ID: mdl-36402913

ABSTRACT

In this paper, we synthesized Ag/ZnO composite colloidal nanoparticles and the surface of nanoparticles was improved by amodiaquine ligand. The synthesized nanoparticles were characterized using the XRD diffraction pattern, FT-IR Spectroscopy, TEM image, and UV-Vis spectroscopy. The antibacterial, antifungal, and antiviral effects of the synthesized colloid were examined on E.coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Enterococcus hirae bacteria, and Candida Albicans and form spore aspergillus fungi, also influenza, herpes simplex, and covid 19 viruses. The results indicate more than 7 log removal of the bacteria, fungi, and viruses by synthesized colloid with a concentration of 15 µg/L (Ag)/50 µg/ml (ZnO). This removal for covid 19 virus is from 3.2 × 108 numbers to 21 viruses within 30 s. Also, irritation and toxicity tests of the synthesized colloid show harmless effects on human cells and tissues. These colloidal nanoparticles were used as mouthwash solution and their clinical tests were done on 500 people infected by the coronavirus. The results indicate that by washing their mouth and nose three times on day all patients got healthy at different times depending on the depth of the disease. Almost all people with no signs of infection and using this solution as a mouthwash didn't infect by the virus during the study.


Subject(s)
COVID-19 Drug Treatment , Disinfectants , Metal Nanoparticles , Zinc Oxide , Humans , Zinc Oxide/chemistry , Disinfectants/pharmacology , Amodiaquine/pharmacology , Metal Nanoparticles/chemistry , Antiviral Agents/pharmacology , Spectroscopy, Fourier Transform Infrared , Mouthwashes/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli
4.
Nanomaterials (Basel) ; 12(9)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35564132

ABSTRACT

In this paper, a high-resolution full-color transparent monitor is designed and fabricated using the synthesized quantum dots for the first time. For this purpose, about 100 compounds that had the potential to emit blue, green, and red lights were selected, and simulation was performed using the discrete dipole approximation (DDA) method, in which the shell layer was selected to be SiO2 or TiO2 in the first step. Among the simulated compounds with SiO2 or TiO2 shells, Se/SiO2 and BTiO3/SiO2 were selected as blue light emitters with high intensity and narrow bandwidth. Accordingly, CdSe/SiO2 nanoparticles were selected as green light emitters and Au/TiO2 for the red light. As the surface of the nanoparticles in their optical properties is important, reactivation of the nanoparticles' surface is required to reach the high-intensity peak and resolution. To this end, in the second step, the surface of Se and CdSe nanoparticles reacted with ethanolamine, which can make a strong bond with cadmium atoms. The band structure and optical properties were obtained by the density functional theory (DFT) method. The Se/Ethanolamine and CdSe/Ethanolamine were experimentally synthesized to evaluate the theoretical results, and their optical properties were measured. To fabricate a transparent monitor, Se/Ethanolamine, CdSe/SiO2, and Au/TiO2 nanoparticles were dispersed in polyvinyl alcohol (PVA) solved in water and deposited on the glass by the doctor blading technique. Finally, high-resolution videos and images were displayed on the fabricated monitor.

5.
Sci Rep ; 11(1): 1533, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33452367

ABSTRACT

Infrared (IR) cameras based on semiconductors grown by epitaxial methods face two main challenges, which are cost and operating at room temperature. The alternative new technologies which can tackle these two difficulties develop new and facile material and methods. Moreover, the implementation of high speed camera, which makes high resolution images with normal methods, is very expensive. In this paper, a new nanostructure based on a cost-effective solution processed technology for the implementation of the high-speed mid-infrared light camera at room temperature is proposed. To this end, the chemically synthesized PbSe-PbI2 core-shell Quantum Dots (QDs) are used. In this work, a camera including 10 × 10 pixels is fabricated and synthesized QDs spin-coated on interdigitated contact (IDC) and then the fabricated system passivated by epoxy resin. Finally, using an electronic reading circuit, all pixels are converted to an image on the monitor. To model the fabricated camera, we solved Schrodinger-Poisson equations self consistently. Then output current from each pixel is modeled based on semiconductor physics and dark and photocurrent, as well as Responsivity and Detectivity, are calculated. Then the fabricated device is examined, and dark and photocurrents are measured and compared to the theoretical results. The obtained results indicate that the obtained theoretical and measured experimental results are in good agreement together. The fabricated detector is high speed with a rise time of 100 ns. With this speed, we can get 10 million frames per second; this means we can get very high-resolution images. The speed of operation is examined experimentally using a chopper that modulates input light with 50, 100, 250, and 500 Hz. It is shown that the fabricated device operates well in these situations, and it is not limited by the speed of detector. Finally, for the demonstration of the proposed device operation, some pictures and movies taken by the camera are attached and inserted in the paper.

6.
Sci Rep ; 9(1): 2293, 2019 Feb 19.
Article in English | MEDLINE | ID: mdl-30783130

ABSTRACT

A novel type of transparent monitor with high-resolution images based on Si-SiO2 core-shell nanoparticles is presented in this contribution. In this monitor, a quasi-array of nanoparticles was used to obtain a very sharp scattering profile. For this purpose, the Si-SiO2 nanoparticles were synthesized and with controlling the size of particles, the dominant emission wavelength was controlled. For the fabrication of a blue color transparent monitor the solution processed Si-SiO2 nanoparticles were dispersed in polystyrene and then coated on a transparent glass surface. After drying the film, the typical features representing a transparent monitor were studied. A video projector was used and text and pictures were sent on the monitor. This monitor reveals very attractive features such as simplicity, wide viewing angle, scalability to larger sizes and low cost. Importantly, the texts and pictures can be well presented on both sides of the fabricated monitor. The composite thin film can be also separated from the glass and can be used as a flexible display. To shed light on the impact of the structure on the optical properties Si-SiO2 and Ag nanomaterials representing perfect arrays of nanoparticles, quasi-arrays and randomly oriented nanoparticles were calculated/simulated using the finite-difference time-domain (FDTD) method. The results were compared to the experimental data and show a high accordance.

7.
Appl Opt ; 56(7): 1953-1961, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28248395

ABSTRACT

This paper presents a computational and semi-analytical approach for theoretical evaluation of solution-process-based optoelectronic devices, such as quantum dot (QD) infrared photodetectors. The dark current and photocurrent for infrared photodetectors are extracted on the basis of the model presented here. In this model, two main mechanisms have been assumed to contribute to the current of the device: the electron tunneling in the confined states and the drift of electrons in the continuum states. For the former, the Landauer-Büttiker formalism, in which the transmission function was obtained through the Green's function method was used. However, the drift-diffusion model was applied for the latter while considering the trapping and detrapping roles of QDs. Furthermore, different geometrical effects have been analyzed, including the QDs' size distribution, the space between QDs, the system's length, and the system's width, on the device's parameters, such as the absorption coefficient, photoconductive gain, dark current, and detectivity. The results seem to point to a great dependency of the device's performance on these geometrical aspects. For example, the nonuniformity of the QDs' sizes have been shown to exert negative effects on the device's detectivity. In addition, it could noticeably influence the tunneling current, such as by decreasing the maximum value of the current.

8.
Appl Opt ; 55(7): 1779-85, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26974643

ABSTRACT

This paper presents a concept to significantly improve the photocurrent of ultrathin crystalline silicon solar cells using plasmonic hemispherical dielectric-metal (core-shell) nanoparticles and backside gratings. The design of three-dimensional spherical and hemispherical arrays of nanoparticles on top of the surface of 0.8 µm crystalline silicon solar cells was simulated using finite-difference time-domain (FDTD) method. We used the FDTD results to investigate the photocurrent by solving the Poisson and drift diffusion equations. The results indicate an enhancement of between 80% and 93% in the photocurrent for cells with hemispherical Ag and Ag-SiO2 core-shell nanoparticles, respectively, compared to a cell with spherical nanoparticles. In addition, for obtaining a higher photocurrent, triangular gratings were applied on the back side of the absorber and we obtained a photocurrent of 22 mA/cm². The simulated results indicate that the proposed structures increase the spectral response of thin-film crystalline silicon solar cells over a solar spectrum in the range of 400 nm-1200 nm. Finally, we investigated photocurrent as a function of incidence light angle and concluded that this approach is applicable to various thicknesses and shapes of nanoparticles.

9.
Chemphyschem ; 14(3): 554-9, 2013 Feb 25.
Article in English | MEDLINE | ID: mdl-23316020

ABSTRACT

Solution-processed ultraviolet photodetectors based on passivated and unpassivated zinc oxide (ZnO) nanorods, in which the ZnO nanoparticles are synthesized by a hydrothermal method, are demonstrated and characterized. Photoconductive photodetectors fabricated using simple solution processing have recently been shown to exhibit high gains and outstanding sensitivities. One ostensible disadvantage of exploiting photoconductive gain is that the temporal response is limited by the release of carriers from trap states. Herein, specific chemical species are introduced onto the surfaces of ZnO nanoparticles to produce desired trap states with a carefully selected lifetime. Compared with conventional photodetectors based on ZnO nanoparticles, the proposed UV photodetectors have much higher photoresponses and faster response times in the UV region. The photoconductive gain of the fabricated photodetectors varies from 26.83 to 2.32×10(2) for passivated samples, which indicates high gain. The best temporal response for the fabricated detectors is 34 ms rise time and 132 ms decay time for ZnO nanoparticles passivated by hexamethylenetetramine.


Subject(s)
Nanotubes/chemistry , Spectrophotometry, Ultraviolet , Zinc Oxide/chemistry , Limit of Detection , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...