Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 187: 114343, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763636

ABSTRACT

Human breast milk promotes maturation of the infant gastrointestinal barrier, including the promotion of mucus production. In the quest to produce next generation infant milk formula (IMF), we have produced IMF by membrane filtration (MEM-IMF). With a higher quantity of native whey protein, MEM-IMF more closely mimics human breast milk than IMF produced using conventional heat treatment (HT-IMF). After a 4-week dietary intervention in young pigs, animals fed a MEM-IMF diet had a higher number of goblet cells, acidic mucus and mucin-2 in the jejunum compared to pigs fed HT-IMF (P < 0.05). In the duodenum, MEM-IMF fed pigs had increased trypsin activity in the gut lumen, increased mRNA transcript levels of claudin 1 in the mucosal scrapings and increased lactase activity in brush border membrane vesicles than those pigs fed HT-IMF (P < 0.05). In conclusion, MEM-IMF is superior to HT-IMF in the promotion of mucus production in the young gut.


Subject(s)
Filtration , Infant Formula , Mucus , Animals , Infant Formula/chemistry , Mucus/metabolism , Swine , Whey Proteins/metabolism , Intestine, Small/metabolism , Trypsin/metabolism , Humans , Goblet Cells/metabolism , Claudin-1/metabolism , Claudin-1/genetics , Lactase/metabolism , Lactase/genetics , Mucin-2/metabolism , Mucin-2/genetics , Intestinal Mucosa/metabolism , Duodenum/metabolism , Jejunum/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Milk Proteins/metabolism , Milk Proteins/analysis
2.
Food Res Int ; 166: 112577, 2023 04.
Article in English | MEDLINE | ID: mdl-36914340

ABSTRACT

Reducing heat treatment (HT) during processing of infant milk formula (IMF) is desirable to produce a product that more closely resembles breast milk. By employing membrane filtration (MEM), we produced an IMF (60:40 whey to casein ratio) at pilot scale (250 kg). MEM-IMF had a significantly higher content of native whey (59.9 %) compared to HT-IMF (4.5 %) (p < 0.001). Pigs, at 28 days old, were blocked by sex, weight and litter origin and assigned to one of two treatments (n = 14/treatment): (1) starter diet containing 35 % of HT-IMF powder or (2) starter diet containing 35 % of MEM-IMF powder for 28 days. Body weight and feed intake were recorded weekly. Pigs at day 28 post weaning were sacrificed 180 min after their final feeding, for the collection of gastric, duodenal, jejunum and ileal contents (n = 10/treatment). MEM-IMF diet resulted in more water-soluble proteins and higher levels of protein hydrolysis in the digesta at various gut locations compared to HT-IMF (p < 0.05). In the jejunal digesta, a higher concentration of free amino acids were present post MEM-IMF consumption (247 ± 15 µmol g-1 of protein in digesta) compared to HT-IMF (205 ± 21 µmol g-1 of protein). Overall, average daily weight gain, average dairy feed intake and feed conversion efficiency were similar for pigs fed either MEM-IMF or HT-IMF diets, but differences and trends to difference of these indicators were determined in particular intervention periods. In conclusion, reducing heat treatment during processing of IMF influenced protein digestion and revealed minor effects on growth parameters providing in vivo evidence that babies who are fed with IMF processed by MEM are likely to have different protein digestion kinetics but minimal effect on overall growth trajectories as babies fed IMF processed by traditional thermal processing.


Subject(s)
Digestion , Milk , Animals , Swine , Milk/metabolism , Proteolysis , Powders , Caseins/metabolism , Whey Proteins/metabolism , Weight Gain
SELECTION OF CITATIONS
SEARCH DETAIL
...