Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Harmful Algae ; 122: 102374, 2023 02.
Article in English | MEDLINE | ID: mdl-36754460

ABSTRACT

High external nutrient loads from agricultural runoff have led to persistent and highly toxic algal blooms in Grand Lake St Marys (GLSM) for decades. These pervasive blooms are concurrent with long-term (2009 - 2021) toxin and environmental monitoring, providing a robust weekly dataset for modeling microcystins. Median weekly microcystin concentrations (23.2 µg/L) routinely exceeded World Health Organization recreational limits (20 µg/L) for the study period (ranged 0.03 - 185.0 µg/L). Here, we used a Bayesian hierarchical dynamic linear model to hindcast weekly microcystin toxins using external nutrient loads from tributary data as well as internal lake nutrient and physicochemical concentrations. Overall, lake TN was the biggest driver of microcystin concentration in GLSM. Likewise, TN:TP was a strong negative driver of microcystin (i.e. low N:P ratios align with lower total microcystins), suggesting that N availability directly impacts toxins. External nutrient loading was positively related to microcystin during winter and spring; however, there was no relationship detected between toxin and external loading during summer or fall (particulate phosphorus exhibited the strongest signal but all external nutrients were unsurprisingly correlated). This lack of direct correlation on a weekly timescale between external loads and cyanobacterial toxins during the summer months likely results from nutrient saturation and reflects the importance of internal loading for bloom maintenance as supported by the correlation between in-lake TN and microcystin. Thus, management goals to reduce the highest biomass and toxins in the summer should focus on reduction of winter and spring external nutrient loads. Supporting this, both 2010 and 2021 had lower rain in the first half of the year (winter/spring), resulting in less loading, and experienced smaller/later low toxicity blooms. This suggests that, although internal nutrient loads are important for bloom maintenance, reduced external loads are an effective management strategy even in nutrient saturated systems such as GLSM.


Subject(s)
Harmful Algal Bloom , Microcystis , Microcystins , Lakes/microbiology , Bayes Theorem
2.
J Am Vet Med Assoc ; 259(12): 1395-1397, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34910662
3.
PeerJ ; 9: e11032, 2021.
Article in English | MEDLINE | ID: mdl-33850649

ABSTRACT

The objective of this study was to evaluate long term trends of fish taxa in southern Lake Michigan while incorporating their functional roles to improve our understanding of ecosystem level changes that have occurred in the system over time. The approach used here highlighted the ease of incorporating ecological mechanisms into population models so researchers can take full advantage of available long-term ecosystem information. Long term studies of fish assemblages can be used to inform changes in community structure resulting from perturbations to aquatic systems and understanding these changes in fish assemblages can be better contextualized by grouping species according to functional groups that are grounded in niche theory. We hypothesized that describing the biological process based on partial pooling of information across functional groups would identify shifts in fish assemblages that coincide with major changes in the ecosystem (e.g., for this study, shifts in zooplankton abundance over time). Herein, we analyzed a long-term Lake Michigan fisheries dataset using a multi-species state space modeling approach within a Bayesian framework. Our results suggested the population growth rates of planktivores and benthic invertivores have been more variable than general invertivores over time and that trends in planktivores can be partially explained by ecosystem changes in zooplankton abundance. Additional work incorporating more ecosystem parameters (e.g., primary production, etc.) should be incorporated into future iterations of this novel modeling concept.

4.
Environ Entomol ; 49(4): 963-973, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32432322

ABSTRACT

By completely censusing a 1 ha forest dynamics plot it was possible to identify the variables (spider mass, size, sex and tree species, size, and bark roughness) that influenced the spatial distribution of adult Drapetisca alteranda Chamberlin 1909 (Araneae: Linyphiidae), a sheet web spider that specializes in lower tree trunks in North American forests. To account for spatial autocorrelation, a conditional autoregressive random effect was included in the zero-inflated Poisson generalized linear mixed model. Parameters estimated were produced by Bayesian inference with vague prior probability distributions and the best of 16 models were selected using Watanabe-Akaike Information Criterion. The best model showed that larger diameter trees located at higher plot elevations were more likely to have D. alteranda present. Smooth bark tree species such as paper birch and American basswood tended to have the most spiders while rough bark species had the least. The relationship between tree diameter and D. alteranda abundance also varied by tree species. Paper birch and quaking aspen tend to produce a greater slope compared to the other species, indicating that as these trees get larger, the abundance of D. alteranda increases at a higher rate than on other tree species. Spider sex and size were not associated with height on the trunk or tree species selection, nor were they associated with microhabitats such as bark furrow depth. Landscape-level factors largely predict D. alteranda abundance and distribution, suggesting that spatial autocorrelation should be considered when modeling the abundance of even small organisms, such as spiders.


Subject(s)
Spiders , Animals , Bayes Theorem , Ecosystem , Forests
5.
Environ Monit Assess ; 190(12): 695, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30386937

ABSTRACT

The importance of monitoring anthropogenic changes in a lotic system is not limited to chemical water quality monitoring. The addition of biological monitoring allows fish to be used as bioindicators because of their varying tolerance to pollution. For this study, we utilized long-term water quality and fish data to evaluate temporal changes brought on by passage of the Clean Water Act (1972). Non-metric multidimensional scaling (NMS) was used to describe changes in the fish community and also heavy metal concentrations of the West Fork White River in Muncie, Indiana, USA, over the past 33 years. A linear mixed effects model was used to evaluate the relationship between heavy metal concentrations and the fish community. The NMS results for both heavy metals and fish were separated into distinct decadal clusters. The shift in fish community data represented by NMS axis 1 was characterized by a drop in pollution-tolerant species and an increase in intolerant species. Decreases in heavy metal concentrations of chromium, zinc, and lead were also significant predictors of changes in the fish community. All NMS fish axis had a positive slope indicating an increase in intolerant species as heavy metal concentrations decreased. Our findings indicate that the water quality improvements documented in the West Fork White River have directly impacted its local fish community.


Subject(s)
Environmental Monitoring/methods , Fishes , Metals, Heavy/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Animals , Indiana , Seafood , Water Quality
6.
Sci Total Environ ; 610-611: 786-795, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-28826116

ABSTRACT

The mechanisms regulating toxin release by cyanobacteria are poorly understood despite the threat cyanotoxins pose to water quality and human health globally. To determine the potential for temperature to regulate microcystin release by toxin-producing cyanobacteria, we evaluated seasonal patterns of water temperature, cyanobacteria biomass, and extracellular microcystin concentration in a eutrophic freshwater lake dominated by Planktothrix agardhii. We replicated seasonal variation in water temperature in a concurrent laboratory incubation experiment designed to evaluate cause-effect relationships between temperature and toxin release. Lake temperature ranged from 3 to 27°C and cyanobacteria biomass increased with warming up to 18°C, but declined rapidly thereafter with further increases in temperature. Extracellular microcystin concentration was tightly coupled with temperature and was most elevated between 20 and 25°C, which was concurrent with the decline in cyanobacteria biomass. A similar trend was observed in laboratory incubations where productivity-specific microcystin release was most elevated between 20 and 25°C and then declined sharply at 30°C. We applied generalized linear mixed modeling to evaluate the strength of water temperature as a predictor of cyanobacteria abundance and microcystin release, and determined that warming≥20°C would result in a 36% increase in microcystin release when Chlorophyll a was ≤50µgl-1. These results show a temperature threshold for toxin release in P. agardhii, which demonstrates a potential to use water temperature to forecast bloom severity in eutrophic lakes where blooms can persist year-round with varying degrees of toxicity.


Subject(s)
Cyanobacteria/metabolism , Eutrophication , Microcystins/metabolism , Temperature , Chlorophyll/analysis , Chlorophyll A , Lakes , Seasons
7.
Sci Total Environ ; 572: 422-433, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27543946

ABSTRACT

We collaborated with 26 groups from universities across the United States to sample 42 sites for 33 trace organic compounds (TOCs) in water and sediments of lotic ecosystems. Our goals were 1) to further develop a national database of TOC abundance in United States lotic ecosystems that can be a foundation for future research and management, and 2) to identify factors related to compound abundance. Trace organic compounds were found in 93% of water samples and 56% of sediment samples. Dissolved concentrations were 10-1000× higher relative to sediment concentrations. The ten most common compounds in water samples with detection frequency and maximum concentration were sucralose (87.5%, 12,000ng/L), caffeine (77.5%, 420ng/L), sulfamethoxazole (70%, 340ng/L), cotinine (65%, 130ng/L), venlafaxine (65%, 1800ng/L), carbamazepine (62.5%, 320ng/L), triclosan (55%, 6800ng/L), azithromycin (15%, 970ng/L), diphenylhydramine (40%, 350ng/L), and desvenlafaxine (35%, 4600ng/L). In sediment, the most common compounds were venlafaxine (32.5%, 19ng/g), diphenhydramine (25%, 41ng/g), azithromycin (15%, 11ng/g), fluoxetine (12.5%, 29ng/g) and sucralose (12.5%, 16ng/g). Refractory compounds such as sucralose may be good indicators of TOC contamination in lotic ecosystems, as there was a correlation between dissolved sucralose concentrations and with the total number of compounds detected in water. Discharge and human demographic (population size) characteristics were not good predictors of compound abundance in water samples. This study further confirms the ubiquity of TOCs in lotic ecosystems. Although concentrations measured rarely approached acute aquatic-life criteria, the chronic effects, bioaccumulative potential, or potential mixture effects of multiple compounds are relatively unknown.


Subject(s)
Environmental Monitoring , Organic Chemicals/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Humans , Population Density , United States
8.
J Neurosci ; 36(11): 3378-90, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-26985044

ABSTRACT

The mammalian cerebral cortex is a dense network composed of local, subcortical, and intercortical synaptic connections. As a result, mapping cell type-specific neuronal connectivity in the cerebral cortex in vivo has long been a challenge for neurobiologists. In particular, the development of excitatory and inhibitory interneuron presynaptic input has been hard to capture. We set out to analyze the development of this connectivity in the first postnatal month using a murine model. First, we surveyed the connectivity of one of the earliest populations of neurons in the brain, the Cajal-Retzius (CR) cells in the neocortex, which are known to be critical for cortical layer formation and are hypothesized to be important in the establishment of early cortical networks. We found that CR cells receive inputs from deeper-layer excitatory neurons and inhibitory interneurons in the first postnatal week. We also found that both excitatory pyramidal neurons and inhibitory interneurons received broad inputs in the first postnatal week, including inputs from CR cells. Expanding our analysis into the more mature brain, we assessed the inputs onto inhibitory interneurons and excitatory projection neurons, labeling neuronal progenitors with Cre drivers to study discrete populations of neurons in older cortex, and found that excitatory cortical and subcortical inputs are refined by the fourth week of development, whereas local inhibitory inputs increase during this postnatal period. Cell type-specific circuit mapping is specific, reliable, and effective, and can be used on molecularly defined subtypes to determine connectivity in the cortex. SIGNIFICANCE STATEMENT: Mapping cortical connectivity in the developing mammalian brain has been an intractable problem, in part because it has not been possible to analyze connectivity with cell subtype precision. Our study systematically targets the presynaptic connections of discrete neuronal subtypes in both the mature and developing cerebral cortex. We analyzed the connections that Cajal-Retzius cells make and receive, and found that these cells receive inputs from deeper-layer excitatory neurons and inhibitory interneurons in the first postnatal week. We assessed the inputs onto inhibitory interneurons and excitatory projection neurons, the major two types of neurons in the cortex, and found that excitatory inputs are refined by the fourth week of development, whereas local inhibitory inputs increase during this postnatal period.


Subject(s)
Cerebral Cortex/cytology , Cerebral Cortex/growth & development , Nerve Net/physiology , Neurons/classification , Neurons/physiology , Presynaptic Terminals/physiology , Age Factors , Animals , Animals, Newborn , Brain Mapping , Embryo, Mammalian , Female , Interneurons/physiology , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Mice , Mice, Transgenic , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Organogenesis/physiology , Transduction, Genetic , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism
9.
Ecol Evol ; 5(18): 3895-904, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26445650

ABSTRACT

Discerning spatial macroecological patterns in freshwater fishes has broad implications for community assembly, ecosystem dynamics, management, and conservation. This study explores the potential interspecific covariation of geographic range (Rapoport's rule) and body size (Bergmann's rule) with latitude in North American sucker fishes (Cypriniformes: Catostomidae). While numerous tests of Rapoport's and Bergmann's rules are documented in the literature, comparatively few of these studies have specifically tested for these patterns, and none have incorporated information reflecting shared ancestry into analyses of North American freshwater fish through a hierarchical model. This study utilized a hierarchical modeling approach with Bayesian inference to evaluate the role that evolution has played in shaping these distributional corollaries. Rapoport's rule was supported at the tribe level but not across family and subfamily groupings. Particularly within the Catostominae subfamily, two tribes reflected strong support for Rapoport's rule while two suggested a pattern was present. Conversely, Bergmann's rule was not supported in Catostomidae. This study provides additional information regarding the pervasiveness of these "rules" by expanding inferences in freshwater fishes and specifically addressing the potential for these macroecological patterns to play a role in the distribution of the understudied group Catostomidae.

10.
PLoS One ; 9(4): e93522, 2014.
Article in English | MEDLINE | ID: mdl-24691075

ABSTRACT

We combine evolutionary biology and community ecology to test whether two species traits, body size and geographic range, explain long term variation in local scale freshwater stream fish assemblages. Body size and geographic range are expected to influence several aspects of fish ecology, via relationships with niche breadth, dispersal, and abundance. These traits are expected to scale inversely with niche breadth or current abundance, and to scale directly with dispersal potential. However, their utility to explain long term temporal patterns in local scale abundance is not known. Comparative methods employing an existing molecular phylogeny were used to incorporate evolutionary relatedness in a test for covariation of body size and geographic range with long term (1983 - 2010) local scale population variation of fishes in West Fork White River (Indiana, USA). The Bayesian model incorporating phylogenetic uncertainty and correlated predictors indicated that neither body size nor geographic range explained significant variation in population fluctuations over a 28 year period. Phylogenetic signal data indicated that body size and geographic range were less similar among taxa than expected if trait evolution followed a purely random walk. We interpret this as evidence that local scale population variation may be influenced less by species-level traits such as body size or geographic range, and instead may be influenced more strongly by a taxon's local scale habitat and biotic assemblages.


Subject(s)
Biological Evolution , Body Size , Fishes/classification , Fishes/genetics , Phylogeny , Animals , Indiana , Rivers
11.
Sci Total Environ ; 458-460: 187-96, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23648448

ABSTRACT

Pharmaceuticals and personal care products (PPCPs) have been documented throughout the United States freshwaters but research has focused largely on lotic systems. Because PPCPs are designed to have a physiological effect, it is likely that they may also influence aquatic organisms. Thus, PPCPs may negatively impact aquatic ecosystems. The objectives of this research were to quantify PPCP abundance in near-shore habitats of southern Lake Michigan and identify factors related to PPCP abundance. Stratified sampling was conducted seasonally at four southern Lake Michigan sites. All sites and depths had measurable PPCP concentrations, with mean individual compound concentrations of acetaminophen (5.36 ng/L), caffeine (31.0 ng/L), carbamazepine (2.23 ng/L), cotinine (4.03 ng/L), gemfibrozil (7.03 ng/L), ibuprofen (7.88 ng/L), lincomycin (4.28 ng/L), naproxen (6.32 ng/L), paraxanthine (1,7-dimethylxanthine; 46.2 ng/L), sulfadimethoxine (0.94 ng/L), sulfamerazine (0.92 ng/L), sulfamethazine (0.92 ng/L), sulfamethoxazole (26.0 ng/L), sulfathiazole (0.92 ng/L), triclocarban (5.72 ng/L), trimethoprim (5.15 ng/L), and tylosin (3.75 ng/L). Concentrations of PPCPs varied significantly among sampling times and locations (river mouth vs offshore), with statistical interactions between the main effects of site and time as well as time and location. Concentrations of PPCPs did not differ with site or depth. Temperature, total carbon, total dissolved solids, dissolved oxygen, and ammonium concentrations were related to total pharmaceutical concentrations. These data indicate that PPCPs are ubiquitous and persistent in southern Lake Michigan, potentially posing harmful effects to aquatic organisms.


Subject(s)
Cosmetics/analysis , Environmental Monitoring/statistics & numerical data , Lakes/chemistry , Pharmaceutical Preparations/analysis , Water Pollutants, Chemical/analysis , Carbon/analysis , Environmental Monitoring/methods , Geography , Illinois , Indiana , Michigan , Oxygen/analysis , Temperature
12.
Environ Monit Assess ; 182(1-4): 259-77, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21286805

ABSTRACT

The goal of biological monitoring programs is to determine impairment classification and identify local stressors. Biological monitoring performs well at detecting impairment but when used alone falls short of determining the cause of the impairment. Following detection a more thorough survey is often conducted using extensive biological, chemical, and physical analysis coupled with exhaustive statistical treatments. These methods can be prohibitive for small programs that are limited by time and budget. The objective of this study was to develop a simple and useful model to predict the probability of biological impairment based on routinely collected habitat assessments. Biological communities were assessed with the Index of Biotic Integrity (IBI), and habitat was assessed with the Qualitative Habitat Evaluation Index. Two models were constructed from a validation dataset. The first predicted a binary outcome of impaired (IBI < 35) or non-impaired (IBI ≥ 35) and the second predicted a categorical gradient of impairment. Categories include very poor, poor, fair, good, and excellent. The models were then validated with an independently collected dataset. Both models successfully predicted biological integrity of the validation dataset with an accuracy of 0.84 (binary) and 0.75 (categorical). Based on the binary outcome model, 22 sites were observed to be impaired while the model predicted them to not be impaired. The categorical model misclassified 47 samples while only seven of those were misclassified by two or more categories. The impairment source was subsequently identified by known stressors. The models developed here can be easily applied to other datasets from the Eastern Corn Belt Plain to aid in stressor identification by predicting the probability of observing an impaired fish community based on habitat. Predicted probabilities from the models can also be used to support conclusions that have already been determined.


Subject(s)
Aquatic Organisms/growth & development , Ecosystem , Environmental Monitoring/methods , Animals , Aquatic Organisms/classification , Biodiversity , Fishes/classification , Fishes/growth & development , Models, Statistical , Water Pollution/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...