Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 61: 128625, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35158044

ABSTRACT

The discovery of potent, bioavailable small molecule inhibitors of p53-HDM2 PPI led us to investigate subsequent modifications to address a CYP3A4 time-dependent inhibition liability. On the basis of the crystal structure of HDM2 in complex with 2, further functionalization of the solvent exposed area of the molecule that binds to Phe19 pocket were investigated as a strategy to modulate the molecule liphophilicity. Introduction of 2-oxo-nicotinic amide at Phe19 proved a viable strategy in obtaining inhibitors exempt from CYP3A4 time-dependent inhibition liability.


Subject(s)
Cytochrome P-450 CYP3A/metabolism , Phenylalanine/pharmacology , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Tumor Suppressor Protein p53/antagonists & inhibitors , Dose-Response Relationship, Drug , Humans , Molecular Structure , Phenylalanine/chemistry , Protein Binding/drug effects , Proto-Oncogene Proteins c-mdm2/metabolism , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Tumor Suppressor Protein p53/metabolism
2.
ACS Med Chem Lett ; 9(7): 761-767, 2018 Jul 12.
Article in English | MEDLINE | ID: mdl-30034615

ABSTRACT

The emergence and evolution of new immunological cancer therapies has sparked a rapidly growing interest in discovering novel pathways to treat cancer. Toward this aim, a novel series of pyrrolidine derivatives (compound 5) were identified as potent inhibitors of ERK1/2 with excellent kinase selectivity and dual mechanism of action but suffered from poor pharmacokinetics (PK). The challenge of PK was overcome by the discovery of a novel 3(S)-thiomethyl pyrrolidine analog 7. Lead optimization through focused structure-activity relationship led to the discovery of a clinical candidate MK-8353 suitable for twice daily oral dosing as a potential new cancer therapeutic.

3.
Bioorg Med Chem Lett ; 28(11): 2029-2034, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29748051

ABSTRACT

Compound 5 (SCH772984) was identified as a potent inhibitor of ERK1/2 with excellent selectivity against a panel of kinases (0/231 kinases tested @ 100 nM) and good cell proliferation activity, but suffered from poor PK (rat AUC PK @10 mpk = 0 µM h; F% = 0) which precluded further development. In an effort to identify novel ERK inhibitors with improved PK properties with respect to 5, a systematic exploration of sterics and composition at the 3-position of the pyrrolidine led to the discovery of a novel 3(S)-thiomethyl pyrrolidine analog 28 with vastly improved PK (rat AUC PK @10 mpk = 26 µM h; F% = 70).


Subject(s)
Antineoplastic Agents/pharmacology , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrrolidines/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrrolidines/chemical synthesis , Pyrrolidines/chemistry , Rats , Structure-Activity Relationship , Tumor Cells, Cultured
4.
Bioorg Med Chem Lett ; 28(8): 1397-1403, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29545102

ABSTRACT

Imidazo-[1, 2-a]pyrazine 1 is a potent inhibitor of Aurora A and B kinase in vitro and is effective in in vivo tumor models, but has poor oral bioavailbility and is unsuitable for oral dosing. We describe herein our effort to improve oral exposure in this class, resulting ultimately in the identification of a potent Aurora inhibitor 16, which exhibited good drug exposure levels across species upon oral dosing, and showed excellent in vivo efficacy in a mouse xenograft tumor model when dosed orally.


Subject(s)
Antineoplastic Agents/therapeutic use , Aurora Kinase A/antagonists & inhibitors , Aurora Kinase B/antagonists & inhibitors , Imidazoles/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Pyrazines/therapeutic use , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Dogs , HCT116 Cells , Haplorhini , Histones/metabolism , Humans , Imidazoles/administration & dosage , Imidazoles/chemical synthesis , Imidazoles/pharmacokinetics , Mice , Phosphorylation , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Pyrazines/administration & dosage , Pyrazines/chemical synthesis , Pyrazines/pharmacokinetics , Rats , Stereoisomerism , Xenograft Model Antitumor Assays
5.
ACS Med Chem Lett ; 7(3): 324-9, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26985323

ABSTRACT

A new subseries of substituted piperidines as p53-HDM2 inhibitors exemplified by 21 has been developed from the initial lead 1. Research focused on optimization of a crucial HDM2 Trp23-ligand interaction led to the identification of 2-(trifluoromethyl)thiophene as the preferred moiety. Further investigation of the Leu26 pocket resulted in potent, novel substituted piperidine inhibitors of the HDM2-p53 interaction that demonstrated tumor regression in several human cancer xenograft models in mice. The structure of HDM2 in complex with inhibitors 3, 10, and 21 is described.

6.
Bioorg Med Chem Lett ; 24(8): 1983-6, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24656661

ABSTRACT

The discovery of 3,3-disubstituted piperidine 1 as novel p53-HDM2 inhibitors prompted us to implement subsequent SAR follow up directed towards piperidine core modifications. Conformational restrictions and further functionalization of the piperidine core were investigated as a strategy to gain additional interactions with HDM2. Substitutions at positions 4, 5 and 6 of the piperidine ring were explored. Although some substitutions were tolerated, no significant improvement in potency was observed compared to 1. Incorporation of an allyl side chain at position 2 provided a drastic improvement in binding potency.


Subject(s)
Piperidines/chemical synthesis , Piperidines/pharmacology , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Tumor Suppressor Protein p53/antagonists & inhibitors , Biological Assay , Cell Proliferation/drug effects , Humans , Inhibitory Concentration 50 , Molecular Structure , Piperidines/chemistry , Protein Binding/drug effects , Proto-Oncogene Proteins c-mdm2/metabolism , Structure-Activity Relationship , Tumor Suppressor Protein p53/metabolism
8.
J Med Chem ; 54(1): 201-10, 2011 Jan 13.
Article in English | MEDLINE | ID: mdl-21128646

ABSTRACT

Aurora kinases are cell cycle regulated serine/threonine kinases that have been linked to cancer. Compound 1 was identified as a potent Aurora inhibitor but lacked oral bioavailability. Optimization of 1 led to the discovery of a series of fluoroamine and deuterated analogues, exemplified by compound 25, with an improved pharmacokinetic profile. We found that blocking oxidative metabolism at the benzylic position and decreasing the basicity of the amine are important to obtaining compounds with good biological profiles and oral bioavailability.


Subject(s)
Antineoplastic Agents/chemical synthesis , Fluorine , Imidazoles/chemical synthesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrazines/chemical synthesis , Administration, Oral , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Aurora Kinases , Biological Availability , Cell Line, Tumor , Deuterium , Dogs , Drug Screening Assays, Antitumor , Histones/metabolism , Humans , Imidazoles/pharmacokinetics , Imidazoles/pharmacology , Macaca fascicularis , Mice , Mice, Nude , Neoplasm Transplantation , Phosphorylation , Pyrazines/pharmacokinetics , Pyrazines/pharmacology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Transplantation, Heterologous
9.
Mol Cancer Ther ; 9(8): 2344-53, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20663931

ABSTRACT

Cyclin-dependent kinases (CDK) are key positive regulators of cell cycle progression and attractive targets in oncology. SCH 727965 inhibits CDK2, CDK5, CDK1, and CDK9 activity in vitro with IC(50) values of 1, 1, 3, and 4 nmol/L, respectively. SCH 727965 was selected as a clinical candidate using a functional screen in vivo that integrated both efficacy and safety parameters. Compared with flavopiridol, SCH 727965 exhibits superior activity with an improved therapeutic index. In cell-based assays, SCH 727965 completely suppressed retinoblastoma phosphorylation, which correlated with apoptosis onset and total inhibition of bromodeoxyuridine incorporation in >100 tumor cell lines of diverse origin and background. Moreover, short exposures to SCH 727965 were sufficient for long-lasting cellular effects. SCH 727965 induced regression of established solid tumors in a range of mouse models following intermittent scheduling of doses below the maximally tolerated level. This was associated with modulation of pharmacodynamic biomarkers in skin punch biopsies and rapidly reversible, mechanism-based effects on hematologic parameters. These results suggest that SCH 727965 is a potent and selective CDK inhibitor and a novel cytotoxic agent.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cyclin-Dependent Kinases/antagonists & inhibitors , Piperidines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridinium Compounds/pharmacology , Antineoplastic Agents/adverse effects , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/adverse effects , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Cell Line, Tumor , Cyclic N-Oxides , Dose-Response Relationship, Drug , Flavonoids/chemistry , Flavonoids/pharmacology , Humans , Indolizines , Phosphorylation/drug effects , Piperidines/adverse effects , Piperidines/chemistry , Poly(ADP-ribose) Polymerases/metabolism , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/chemistry , Pyridinium Compounds/adverse effects , Pyridinium Compounds/chemistry , Retinoblastoma Protein/metabolism , Xenograft Model Antitumor Assays
10.
J Biol Chem ; 285(14): 10198-212, 2010 Apr 02.
Article in English | MEDLINE | ID: mdl-20124408

ABSTRACT

Abrogation of p53 function occurs in almost all human cancers, with more than 50% of cancers harboring inactivating mutations in p53 itself. Mutation of p53 is indicative of highly aggressive cancers and poor prognosis. The vast majority of mutations in p53 occur in its core DNA binding domain (DBD) and result in inactivation of p53 by reducing its thermodynamic stability at physiological temperature. Here, we report a small molecule, SCH529074, that binds specifically to the p53 DBD in a saturable manner with an affinity of 1-2 microm. Binding restores wild type function to many oncogenic mutant forms of p53. This small molecule reactivates mutant p53 by acting as a chaperone, in a manner similar to that previously reported for the peptide CDB3. Binding of SCH529074 to the p53 DBD is specifically displaced by an oligonucleotide with a sequence derived from the p53-response element. In addition to reactivating mutant p53, SCH529074 binding inhibits ubiquitination of p53 by HDM2. We have also developed a novel variant of p53 by changing a single amino acid in the core domain of p53 (N268R), which abolishes binding of SCH529074. This amino acid change also inhibits HDM2-mediated ubiquitination of p53. Our novel findings indicate that through its interaction with p53 DBD, SCH529074 restores DNA binding activity to mutant p53 and inhibits HDM2-mediated ubiquitination.


Subject(s)
Cell Proliferation/drug effects , DNA/metabolism , Mutation/genetics , Piperazines/pharmacology , Proto-Oncogene Proteins c-mdm2/metabolism , Quinazolines/pharmacology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Ubiquitination , Animals , Apoptosis/drug effects , Binding Sites , Blotting, Western , Chromatin Immunoprecipitation , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/prevention & control , DNA/chemistry , DNA/genetics , Female , Humans , Immunoprecipitation , Mice , Mice, Nude , Molecular Chaperones , Piperazines/isolation & purification , Protein Binding , Proto-Oncogene Proteins c-mdm2/genetics , Quinazolines/isolation & purification , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Xenograft Model Antitumor Assays
11.
Bioorg Med Chem Lett ; 20(5): 1689-92, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20149655

ABSTRACT

Hepatitis C (HCV) infection is a global health crisis leading to chronic liver disease. In our efforts towards a second generation HCV NS3 serine protease inhibitor with improved profile, we have undertaken SAR studies in various regions of Boceprevir including P2. Herein, we report the synthesis and structure-activity relationship studies of inhibitors with (S)-1,4-dithia-7-azaspiro[4.4]nonane-8-carboxylic acid 2 as P2 substituent replacing the (1R,2S,5S)-6,6-dimethyl 3-azabicyclo[3.1.0]hexane-2-carboxylic acid. The systematic investigation led to the discovery of highly potent inhibitor 25 (K(i)( *)=7nM, EC(90)=30nM) with improved rat exposure of 2.56microM h.


Subject(s)
Antiviral Agents/chemistry , Proline/analogs & derivatives , Protease Inhibitors/chemistry , Quinolizines/chemistry , Sulfur Compounds/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacokinetics , Binding Sites , Computer Simulation , Humans , Proline/chemical synthesis , Proline/chemistry , Proline/pharmacokinetics , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacokinetics , Rats , Structure-Activity Relationship , Viral Nonstructural Proteins/metabolism
12.
Bioorg Med Chem ; 18(5): 1854-65, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20149666

ABSTRACT

Hepatitis is a disease characterized by inflammation of the liver, usually producing swelling and, in many cases, permanent damage to liver tissues. Viral hepatitis C (HCV), a small (+)-RNA virus, infects chronically 3% of the world's population. Boceprevir, SCH 503034, (1) our first generation HCV inhibitor, has already established proof-of- concept and is currently in late stage (phase III) clinical trials. In view of the positive data from our first generation compound, further work aimed at optimizing its overall profile was undertaken. Herein, we report that extension of our earlier inhibitor to the P(4) pocket by introducing a new sulfonamide moiety and optimization of the P1/P(1)' capping led to the discovery of a novel series of inhibitors of the HCV NS3 serine protease. Optimization of the P(1) residue significantly improved potency and selectivity. The combination of optimal moieties led to the discovery of compound 47 which, in addition to being a potent inhibitor of HCV subgenomic RNA replication, was also found to have good PK profile in rat, dog and monkey.


Subject(s)
Amides/chemistry , Antiviral Agents/chemistry , Serine Proteinase Inhibitors/chemistry , Sulfonamides/chemistry , Urea/analogs & derivatives , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacokinetics , Binding Sites , Computer Simulation , Dogs , Drug Evaluation, Preclinical , Escherichia coli Proteins , Haplorhini , Humans , Membrane Proteins , Models, Molecular , Rats , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/pharmacokinetics , Sulfonamides/chemical synthesis , Sulfonamides/pharmacokinetics , Urea/chemical synthesis , Urea/chemistry , Urea/pharmacokinetics , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
13.
Bioorg Med Chem Lett ; 20(3): 1134-6, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20056542

ABSTRACT

The discovery of C-linked imidazole azaheptapyridine bridgehead FPT inhibitors is described. This novel class of compounds are sub nM FPT enzyme inhibitors with potent cellular inhibitory activities. This series also has reduced hERG activity versus previous N-linked imidazole series. X-ray of compound 10a bound to FTase revealed strong interaction between bridgehead imidazole 3N with catalytic zinc atom.


Subject(s)
Drug Discovery/methods , Farnesyltranstransferase/antagonists & inhibitors , Imidazoles/chemistry , Pyridines/chemistry , Cell Line, Tumor , Crystallography, X-Ray , Farnesyltranstransferase/metabolism , Humans , Imidazoles/metabolism , Imidazoles/pharmacology , Pyridines/metabolism , Pyridines/pharmacology
14.
ACS Med Chem Lett ; 1(5): 204-8, 2010 Aug 12.
Article in English | MEDLINE | ID: mdl-24900195

ABSTRACT

Inhibition of cyclin-dependent kinases (CDKs) has emerged as an attractive strategy for the development of novel oncology therapeutics. Herein is described the utilization of an in vivo screening approach with integrated efficacy and tolerability parameters to identify candidate CDK inhibitors with a suitable balance of activity and tolerability. This approach has resulted in the identification of SCH 727965, a potent and selective CDK inhibitor that is currently undergoing clinical evaluation.

15.
ACS Med Chem Lett ; 1(5): 214-8, 2010 Aug 12.
Article in English | MEDLINE | ID: mdl-24900197

ABSTRACT

The imidazo-[1,2-a]-pyrazine (1) is a dual inhibitor of Aurora kinases A and B with modest cell potency (IC50 = 250 nM) and low solubility (5 µM). Lead optimization guided by the binding mode led to the acyclic amino alcohol 12k (SCH 1473759), which is a picomolar inhibitor of Aurora kinases (TdF K d Aur A = 0.02 nM and Aur B = 0.03 nM) with improved cell potency (phos-HH3 inhibition IC50 = 25 nM) and intrinsic aqueous solubility (11.4 mM). It also demonstrated efficacy and target engagement in human tumor xenograft mouse models.

16.
J Mass Spectrom ; 43(10): 1393-401, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18438977

ABSTRACT

Farnesyl protein transferase (FPT) inhibition is an interesting and promising approach to noncytotoxic anticancer therapy. Research in this area has resulted in several orally active compounds that are in clinical trials. Electrospray ionization (ESI) time-of-flight mass spectrometry (TOF-MS) was used for the direct detection of a 95 182 Da pentameric noncovalent complex of alpha/beta subunits of FPT containing Zn, farnesyl pyrophosphate (FPP) and SCH 66336, a compound currently undergoing phase III clinical trials as an anticancer agent. It was noted that the desalting of protein samples was an important factor in the detection of the complex. This study demonstrated that the presence of FPP in the system was necessary for the detection of the FPT-inhibitor complex. No pentameric complex was detected in the spectrum when the experiment was carried out in the absence of the FPP. An indirect approach was also applied to confirm the noncovalent binding of SCH 66336 to FPT by the use of an off-line size exclusion chromatography followed by liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) for the detection of the inhibitor.


Subject(s)
Alkyl and Aryl Transferases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Piperidines/pharmacology , Pyridines/pharmacology , Alkyl and Aryl Transferases/metabolism , Chromatography, Gel , Enzyme Inhibitors/metabolism , Mass Spectrometry , Molecular Weight , Piperidines/metabolism , Protein Denaturation , Pyridines/metabolism , Spectrometry, Mass, Electrospray Ionization
17.
Biopolymers ; 89(5): 372-9, 2008 May.
Article in English | MEDLINE | ID: mdl-17937404

ABSTRACT

CDK2 inhibitors containing the related bicyclic heterocycles pyrazolopyrimidines and imidazopyrazines were discovered through high-throughput screening. Crystal structures of inhibitors with these bicyclic cores and two more related ones show that all but one have a common binding mode featuring two hydrogen bonds (H-bonds) to the backbone of the kinase hinge region. Even though ab initio computations indicated that the imidazopyrazine core would bind more tightly to the hinge, pyrazolopyrimidines gain an advantage in potency through participation of N4 in an H-bond network involving two catalytic residues and bridging water molecules. Further insight into inhibitor/CDK2 interactions was gained from analysis of additional crystal structures. Significant gains in potency were obtained by optimizing the fit of hydrophobic substituents to the gatekeeper region of the ATP binding site. The most potent inhibitors have good selectivity.


Subject(s)
Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/chemistry , Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Binding Sites/drug effects , Crystallography, X-Ray , Drug Evaluation, Preclinical , Inhibitory Concentration 50 , Models, Molecular , Molecular Structure , Protein Structure, Tertiary , Structure-Activity Relationship
20.
Bioorg Med Chem Lett ; 16(3): 507-11, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16289818

ABSTRACT

Farnesyltransferase inhibitors identified from an ECLiPS library were optimized using solution-phase synthesis. X-ray crystallography of inhibited complexes was used to identify substructures that coordinate to the active site zinc. The X-ray structures were ultimately used to guide the design of second-generation analogs with FTase IC(50)s of less than 1.0 nM.


Subject(s)
Enzyme Inhibitors/pharmacology , Farnesyltranstransferase/antagonists & inhibitors , Peptide Library , Zinc/chemistry , Animals , Binding Sites , Catalysis , Crystallography, X-Ray , Enzyme Inhibitors/chemical synthesis , Farnesyltranstransferase/chemical synthesis , Inhibitory Concentration 50 , Mice , NIH 3T3 Cells , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...