Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
JCI Insight ; 9(2)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38258903

ABSTRACT

Suppression of glucagon hypersecretion can normalize hyperglycemia during type 1 diabetes (T1D). Activating erythropoietin-producing human hepatocellular receptor type-A4 (EphA4) on α cells reduced glucagon hypersecretion from dispersed α cells and T1D islets from both human donor and mouse models. We synthesized a high-affinity small molecule agonist for the EphA4 receptor, WCDD301, which showed robust plasma and liver microsome metabolic stability in both mouse and human preparations. In islets and dispersed islet cells from nondiabetic and T1D human donors, WCDD301 reduced glucagon secretion comparable to the natural EphA4 ligand, Ephrin-A5. In diabetic NOD and streptozotocin-treated mice, once-daily oral administration of WCDD301 formulated with a time-release excipient reduced plasma glucagon and normalized blood glucose for more than 3 months. These results suggest that targeting the α cell EphA4 receptor by sustained release of WCDD301 is a promising pharmacologic pathway for normalizing hyperglycemia in patients with T1D.


Subject(s)
Diabetes Mellitus, Type 1 , Hyperglycemia , Humans , Animals , Mice , Mice, Inbred NOD , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/drug therapy , Glucagon , Receptor, EphA4 , Hyperglycemia/drug therapy , Receptors, Erythropoietin
2.
Nat Aging ; 4(1): 95-109, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38066314

ABSTRACT

Aging is a common risk factor in neurodegenerative disorders. Investigating neuronal aging in an isogenic background stands to facilitate analysis of the interplay between neuronal aging and neurodegeneration. Here we perform direct neuronal reprogramming of longitudinally collected human fibroblasts to reveal genetic pathways altered at different ages. Comparative transcriptome analysis of longitudinally aged striatal medium spiny neurons (MSNs) in Huntington's disease identified pathways involving RCAN1, a negative regulator of calcineurin. Notably, RCAN1 protein increased with age in reprogrammed MSNs as well as in human postmortem striatum and RCAN1 knockdown rescued patient-derived MSNs of Huntington's disease from degeneration. RCAN1 knockdown enhanced chromatin accessibility of genes involved in longevity and autophagy, mediated through enhanced calcineurin activity, leading to TFEB's nuclear localization by dephosphorylation. Furthermore, G2-115, an analog of glibenclamide with autophagy-enhancing activities, reduced the RCAN1-calcineurin interaction, phenocopying the effect of RCAN1 knockdown. Our results demonstrate that targeting RCAN1 genetically or pharmacologically can increase neuronal resilience in Huntington's disease.


Subject(s)
Calcineurin , Huntington Disease , Humans , Aged , Calcineurin/genetics , Huntington Disease/genetics , Aging/genetics , Transcription Factors/metabolism , Corpus Striatum/metabolism , DNA-Binding Proteins/metabolism , Muscle Proteins/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism
3.
FEBS Open Bio ; 13(8): 1434-1446, 2023 08.
Article in English | MEDLINE | ID: mdl-37392453

ABSTRACT

Neutrophils are an essential component of the innate immune system; however, uncontrolled neutrophil activity can lead to inflammation and tissue damage in acute and chronic diseases. Despite inclusion of neutrophil presence and activity in clinical evaluations of inflammatory diseases, the neutrophil has been an overlooked therapeutic target. The goal of this program was to design a small molecule regulator of neutrophil trafficking and activity that fulfilled the following criteria: (a) modulates neutrophil epithelial transmigration and activation, (b) lacks systemic exposure, (c) preserves protective host immunity, and (d) is administered orally. The result of this discovery program was ADS051 (also known as BT051), a low permeability, small molecule modulator of neutrophil trafficking and activity via blockade of multidrug resistance protein 2 (MRP2)- and formyl peptide receptor 1 (FPR1)-mediated mechanisms. ADS051, based on a modified scaffold derived from cyclosporine A (CsA), was designed to have reduced affinity for calcineurin with low cell permeability and, thus, a greatly reduced ability to inhibit T-cell function. In cell-based assays, ADS051 did not inhibit cytokine secretion from activated human T cells. Furthermore, in preclinical models, ADS051 showed limited systemic absorption (<1% of total dose) after oral administration, and assessment of ADS051 in human, cell-based systems demonstrated inhibition of neutrophil epithelial transmigration. In addition, preclinical toxicology studies in rats and monkeys receiving daily oral doses of ADS051 for 28 days did not reveal safety risks or ADS051-related toxicity. Our results to date support the clinical development of ADS051 in patients with neutrophil-mediated inflammatory diseases.


Subject(s)
Inflammation , Neutrophils , Humans , Rats , Animals , Inflammation/drug therapy
4.
Clin Transl Immunology ; 12(6): e1455, 2023.
Article in English | MEDLINE | ID: mdl-37360982

ABSTRACT

Objectives: Inflammasomes induce maturation of the inflammatory cytokines IL-1ß and IL-18, whose activity is associated with the pathophysiology of a wide range of infectious and inflammatory diseases. As validated therapeutic targets for the treatment of acute and chronic inflammatory diseases, there has been intense interest in developing small-molecule inhibitors to target inflammasome activity and reduce disease-associated inflammatory burden. Methods: We examined the therapeutic potential of a novel small-molecule inhibitor, and associated derivatives, termed ADS032 to target and reduce inflammasome-mediated inflammation in vivo. In vitro, we characterised ADS032 function, target engagement and specificity. Results: We describe ADS032 as the first dual NLRP1 and NLRP3 inhibitor. ADS032 is a rapid, reversible and stable inflammasome inhibitor that directly binds both NLRP1 and NLRP3, reducing secretion and maturation of IL-1ß in human-derived macrophages and bronchial epithelial cells in response to the activation of NLPR1 and NLRP3. ADS032 also reduced NLRP3-induced ASC speck formation, indicative of targeting inflammasome formation. In vivo, ADS032 reduced IL-1ß and TNF-α levels in the serum of mice challenged i.p. with LPS and reduced pulmonary inflammation in an acute model of lung silicosis. Critically, ADS032 protected mice from lethal influenza A virus challenge, displayed increased survival and reduced pulmonary inflammation. Conclusion: ADS032 is the first described dual inflammasome inhibitor and a potential therapeutic to treat both NLRP1- and NLRP3-associated inflammatory diseases and also constitutes a novel tool that allows examination of the role of NLRP1 in human disease.

5.
Res Sq ; 2023 May 09.
Article in English | MEDLINE | ID: mdl-37214956

ABSTRACT

Aging is a common risk factor in neurodegenerative disorders and the ability to investigate aging of neurons in an isogenic background would facilitate discovering the interplay between neuronal aging and onset of neurodegeneration. Here, we perform direct neuronal reprogramming of longitudinally collected human fibroblasts to reveal genetic pathways altered at different ages. Comparative transcriptome analysis of longitudinally aged striatal medium spiny neurons (MSNs), a primary neuronal subtype affected in Huntington's disease (HD), identified pathways associated with RCAN1, a negative regulator of calcineurin. Notably, RCAN1 undergoes age-dependent increase at the protein level detected in reprogrammed MSNs as well as in human postmortem striatum. In patient-derived MSNs of adult-onset HD (HD-MSNs), counteracting RCAN1 by gene knockdown (KD) rescued HD-MSNs from degeneration. The protective effect of RCAN1 KD was associated with enhanced chromatin accessibility of genes involved in longevity and autophagy, mediated through enhanced calcineurin activity, which in turn dephosphorylates and promotes nuclear localization of TFEB transcription factor. Furthermore, we reveal that G2-115 compound, an analog of glibenclamide with autophagy-enhancing activities, reduces the RCAN1-Calcineurin interaction, phenocopying the effect of RCAN1 KD. Our results demonstrate that RCAN1 is a potential genetic or pharmacological target whose reduction-of-function increases neuronal resilience to neurodegeneration in HD through chromatin reconfiguration.

6.
Nat Neurosci ; 25(11): 1420-1433, 2022 11.
Article in English | MEDLINE | ID: mdl-36303071

ABSTRACT

Huntington's disease (HD) is an inherited neurodegenerative disorder with adult-onset clinical symptoms, but the mechanism by which aging drives the onset of neurodegeneration in patients with HD remains unclear. In this study we examined striatal medium spiny neurons (MSNs) directly reprogrammed from fibroblasts of patients with HD to model the age-dependent onset of pathology. We found that pronounced neuronal death occurred selectively in reprogrammed MSNs from symptomatic patients with HD (HD-MSNs) compared to MSNs derived from younger, pre-symptomatic patients (pre-HD-MSNs) and control MSNs from age-matched healthy individuals. We observed age-associated alterations in chromatin accessibility between HD-MSNs and pre-HD-MSNs and identified miR-29b-3p, whose age-associated upregulation promotes HD-MSN degeneration by impairing autophagic function through human-specific targeting of the STAT3 3' untranslated region. Reducing miR-29b-3p or chemically promoting autophagy increased the resilience of HD-MSNs against neurodegeneration. Our results demonstrate miRNA upregulation with aging in HD as a detrimental process driving MSN degeneration and potential approaches for enhancing autophagy and resilience of HD-MSNs.


Subject(s)
Huntington Disease , MicroRNAs , Humans , Animals , Huntington Disease/pathology , Corpus Striatum/physiology , Neurons/physiology , Autophagy , MicroRNAs/genetics , Disease Progression , Disease Models, Animal
7.
Front Synaptic Neurosci ; 13: 680621, 2021.
Article in English | MEDLINE | ID: mdl-34290596

ABSTRACT

Hearing depends on glutamatergic synaptic transmission mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). AMPARs are tetramers, where inclusion of the GluA2 subunit reduces overall channel conductance and Ca2+ permeability. Cochlear afferent synapses between inner hair cells (IHCs) and auditory nerve fibers (ANFs) contain the AMPAR subunits GluA2, 3, and 4. However, the tetrameric complement of cochlear AMPAR subunits is not known. It was recently shown in mice that chronic intracochlear delivery of IEM-1460, an antagonist selective for GluA2-lacking AMPARs [also known as Ca2+-permeable AMPARs (CP-AMPARs)], before, during, and after acoustic overexposure prevented both the trauma to ANF synapses and the ensuing reduction of cochlear nerve activity in response to sound. Surprisingly, baseline measurements of cochlear function before exposure were unaffected by chronic intracochlear delivery of IEM-1460. This suggested that cochlear afferent synapses contain GluA2-lacking CP-AMPARs alongside GluA2-containing Ca2+-impermeable AMPA receptors (CI-AMPARs), and that the former can be antagonized for protection while the latter remain conductive. Here, we investigated hearing function in the guinea pig during acute local or systemic delivery of CP-AMPAR antagonists. Acute intracochlear delivery of IEM-1460 or systemic delivery of IEM-1460 or IEM-1925 reduced the amplitude of the ANF compound action potential (CAP) significantly, for all tone levels and frequencies, by > 50% without affecting CAP thresholds or distortion product otoacoustic emissions (DPOAE). Following systemic dosing, IEM-1460 levels in cochlear perilymph were ~ 30% of blood levels, on average, consistent with pharmacokinetic properties predicting permeation of the compounds into the brain and ear. Both compounds were metabolically stable with half-lives >5 h in vitro, and elimination half-lives in vivo of 118 min (IEM-1460) and 68 min (IEM-1925). Heart rate monitoring and off-target binding assays suggest an enhanced safety profile for IEM-1925 over IEM-1460. Compound potency on CAP reduction (IC50 ~ 73 µM IEM-1460) was consistent with a mixture of GluA2-lacking and GluA2-containing AMPARs. These data strongly imply that cochlear afferent synapses of the guinea pig contain GluA2-lacking CP-AMPARs. We propose these CP-AMPARs may be acutely antagonized with systemic dosing, to protect from glutamate excitotoxicity, while transmission at GluA2-containing AMPARs persists to mediate hearing during the protection.

9.
J Med Chem ; 63(13): 7033-7051, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32506913

ABSTRACT

Mutations in the mitochondrial fusion protein mitofusin (MFN) 2 cause the chronic neurodegenerative condition Charcot-Marie-Tooth disease type 2A (CMT2A), for which there is currently no treatment. Small-molecule activators of MFN1 and MFN2 enhance mitochondrial fusion and offer promise as therapy for this condition, but prototype compounds have poor pharmacokinetic properties. Herein, we describe a rational design of a series of 6-phenylhexanamide derivatives whose pharmacokinetic optimization yielded a 4-hydroxycyclohexyl analogue, 13, with the potency, selectivity, and oral bioavailability of a preclinical candidate. Studies of 13 cis- and trans-4-hydroxycyclohexyl isostereomers unexpectedly revealed functionality and protein engagement exclusively for the trans form, 13B. Preclinical absorption, distribution, metabolism, and excretion (ADME) and in vivo target engagement studies of 13B support further development of 6-phenylhexanamide derivatives as therapeutic agents for human CMT2A.


Subject(s)
Amides/chemistry , Amides/pharmacology , Drug Design , GTP Phosphohydrolases/metabolism , Mitochondrial Diseases/drug therapy , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Proteins/metabolism , Amides/pharmacokinetics , Amides/therapeutic use , Animals , Mice , Stereoisomerism , Substrate Specificity , Tissue Distribution
10.
ACS Med Chem Lett ; 7(4): 374-8, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27096044

ABSTRACT

The ATPase subunit of DNA gyrase B is an attractive antibacterial target due to high conservation across bacteria and the essential role it plays in DNA replication. A novel class of pyrazolopyridone inhibitors was discovered by optimizing a fragment screening hit scaffold using structure guided design. These inhibitors show potent Gram-positive antibacterial activity and low resistance incidence against clinically important pathogens.

11.
Bioorg Med Chem Lett ; 26(4): 1314-8, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26786695

ABSTRACT

Inhibitors of the ATPase function of bacterial DNA gyrase, located in the GyrB subunit and its related ParE subunit in topoisomerase IV, have demonstrated antibacterial activity. In this study we describe an NMR fragment-based screening effort targeting Staphylococcus aureus GyrB that identified several attractive and novel starting points with good ligand efficiency. Fragment hits were further characterized using NMR binding studies against full-length S. aureus GyrB and Escherichia coli ParE. X-ray co-crystal structures of select fragment hits confirmed binding and suggested a path for medicinal chemistry optimization. The identification, characterization, and elaboration of one of these fragment series to a 0.265 µM inhibitor is described herein.


Subject(s)
Anti-Bacterial Agents/chemistry , Bacterial Proteins/antagonists & inhibitors , DNA Gyrase/chemistry , Topoisomerase II Inhibitors/chemistry , Adenosine Triphosphatases/metabolism , Anti-Bacterial Agents/metabolism , Bacterial Proteins/metabolism , Binding Sites , Crystallography, X-Ray , DNA Gyrase/metabolism , DNA Topoisomerase IV/antagonists & inhibitors , DNA Topoisomerase IV/metabolism , Drug Design , Escherichia coli/metabolism , Ligands , Magnetic Resonance Spectroscopy , Molecular Dynamics Simulation , Protein Binding , Protein Structure, Tertiary , Staphylococcus aureus/enzymology , Topoisomerase II Inhibitors/metabolism
12.
ACS Med Chem Lett ; 6(10): 1080-5, 2015 Oct 08.
Article in English | MEDLINE | ID: mdl-26487916

ABSTRACT

Antibacterials with a novel mechanism of action offer a great opportunity to combat widespread antimicrobial resistance. Bacterial DNA Gyrase is a clinically validated target. Through physiochemical property optimization of a pyrazolopyridone hit, a novel class of GyrB inhibitors were discovered. Guided by structure-based drug design, indazole derivatives with excellent enzymatic and antibacterial activity as well as great animal efficacy were discovered.

13.
J Med Chem ; 58(21): 8503-12, 2015 Nov 12.
Article in English | MEDLINE | ID: mdl-26460684

ABSTRACT

The emergence and spread of multidrug resistant bacteria are widely believed to endanger human health. New drug targets and lead compounds exempt from cross-resistance with existing drugs are urgently needed. We report on the discovery of azaindole ureas as a novel class of bacterial gyrase B inhibitors and detail the story of their evolution from a de novo design hit based on structure-based drug design. These inhibitors show potent minimum inhibitory concentrations against fluoroquinolone resistant MRSA and other Gram-positive bacteria.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , DNA Gyrase/metabolism , Indoles/pharmacology , Methicillin-Resistant Staphylococcus aureus/enzymology , Topoisomerase II Inhibitors/pharmacology , Urea/pharmacology , Bacterial Proteins/metabolism , Crystallography, X-Ray , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/enzymology , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/microbiology , Humans , Indoles/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Models, Molecular , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Topoisomerase II Inhibitors/chemistry , Urea/analogs & derivatives
14.
ChemMedChem ; 9(8): 1638-54, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24981721

ABSTRACT

N-Substituted trans-3,4-dimethyl-4-(3-hydroxyphenyl)piperidines are a class of pure opioid receptor antagonists with a novel pharmacophore. This opioid receptor antagonist pharmacophore was used as a lead structure to design and develop several interesting and useful opioid receptor antagonists. In this review we describe: 1) early SAR studies that led to the discovery of LY255582 and analogues that are nonselective opioid receptor antagonists developed for the treatment of obesity; 2) the discovery and commercialization of LY246736 (alvimopan; ENTEREG®), a peripherally selective opioid receptor antagonist that accelerates the time to upper and lower GI recovery following surgeries that include partial bowel resection with primary anastomosis; and 3) the discovery and development of the potent and selective κ opioid receptor antagonist JDTic and analogues as potential pharmacotherapies for treating depression, anxiety, and substance abuse (nicotine, alcohol, and cocaine). In addition, the use of JDTic for obtaining the X-ray structure of the human κ opioid receptor is discussed.


Subject(s)
Narcotic Antagonists/chemistry , Piperidines/chemistry , Receptors, Opioid/chemistry , Crystallography, X-Ray , Drug Evaluation, Preclinical , Humans , Narcotic Antagonists/metabolism , Piperidines/metabolism , Protein Binding , Protein Structure, Tertiary , Receptors, Opioid/metabolism , Structure-Activity Relationship
15.
J Pharmacol Exp Ther ; 342(3): 799-807, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22700431

ABSTRACT

N,N-diethyl-4-(5-hydroxyspiro[chromene-2,4'-piperidine]-4-yl) benzamide (ADL5859) and N,N-diethyl-3-hydroxy-4-(spiro[chromene-2,4'-piperidine]-4-yl)benzamide (ADL5747) are novel δ-opioid agonists that show good oral bioavailability and analgesic and antidepressive effects in the rat and represent potential drugs for chronic pain treatment. Here, we used genetic approaches to investigate molecular mechanisms underlying their analgesic effects in the mouse. We tested analgesic effects of ADL5859 and ADL5747 in mice by using mechanical sensitivity measures in both complete Freund's adjuvant and sciatic nerve ligation pain models. We examined their analgesic effects in δ-opioid receptor constitutive knockout (KO) mice and mice with a conditional deletion of δ-receptor in peripheral voltage-gated sodium channel (Nav)1.8-expressing neurons (cKO mice). Both ADL5859 and ADL5747, and the prototypical δ agonist 4-[(R)-[(2S,5R)-4-allyl-2,5-dimethyl-piperazin-1-yl]-(3-methoxyphenyl)methyl]-N,N-diethyl-benzamide (SNC80) as a control, significantly reduced inflammatory and neuropathic pain. The antiallodynic effects of all three δ-opioid agonists were abolished in constitutive δ-receptor KO mice and strongly diminished in δ-receptor cKO mice. We also measured two other well described effects of δ agonists, increase in locomotor activity and agonist-induced receptor internalization by using knock-in mice expressing enhanced green fluorescence protein-tagged δ receptors. In contrast to SNC80, ADL5859 and ADL5747 did not induce either hyperlocomotion or receptor internalization in vivo. In conclusion, both ADL5859 and ADL5747 showed efficient pain-reducing properties in the two models of chronic pain. Their effects were mediated by δ-opioid receptors, with a main contribution of receptors expressed on peripheral Nav1.8-positive neurons. The lack of in vivo receptor internalization and locomotor activation, typically induced by SNC80, suggests agonist-biased activity at the receptor for the two drugs.


Subject(s)
Benzamides/pharmacology , Benzopyrans/pharmacology , Locomotion/drug effects , Neuralgia/drug therapy , Receptors, Opioid, delta/metabolism , Spiro Compounds/pharmacology , Analgesia/methods , Analgesics, Opioid/agonists , Animals , Disease Models, Animal , Gene Knock-In Techniques , Humans , Inflammation/drug therapy , Inflammation/genetics , Inflammation/metabolism , Locomotion/genetics , Locomotion/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , NAV1.8 Voltage-Gated Sodium Channel/genetics , NAV1.8 Voltage-Gated Sodium Channel/metabolism , Neuralgia/genetics , Neuralgia/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/physiology , Pain Measurement/methods , Piperazines/pharmacology , Receptors, Opioid, delta/genetics
16.
Mov Disord ; 26(7): 1225-33, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21465551

ABSTRACT

In Parkinson's disease (PD), dyskinesia develops following long-term treatment with 3,4-dihydroxyphenylalanine (L-dopa). Given the prominent role of the opioid system in basal ganglia function, nonselective opioid receptor antagonists have been tested for antidyskinetic efficacy in the clinic (naltrexone and naloxone), although without success. In the current study, ADL5510, a novel, orally active opioid antagonist with mu opioid receptor selectivity, was examined in L-dopa-treated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) macaques. Antidyskinetic effects were compared with those of naltrexone. Parkinsonian monkeys with established L-dopa-induced dyskinesia (LID) received acute challenges with L-dopa (subcutaneously) in combination with either vehicle, ADL5510 (0.1, 1, 3 or 10 mg/kg by mouth), or naltrexone (1, 3, or 10 mg/kg subcutaneously). Following treatments, behavior was monitored for 6 hours. Parameters assessed were total activity, parkinsonism, and dyskinesia. ADL5510 (1, 3, and 10 mg/kg) reduced activity and LID (chorea and dystonia) without affecting the antiparkinsonian benefits of L-dopa. The antidyskinetic effect of ADL5510 showed a U-shaped dose-response. It was inactive at 0.1 mg/kg, efficacious at 1 and 3 mg/kg (72% and 40% reductions, respectively), and then less effective at 10 mg/kg. The quality of ON time produced by L-dopa was improved, as indicated by a reduction in the percentage of ON time spent experiencing disabling dyskinesia (70% and 61% reductions with 1 and 3 mg/kg, respectively, compared with L-dopa). Naltrexone, in contrast, did not alleviate LID or affect the antiparkinsonian actions of L-dopa. Mu-selective opioid antagonists have the potential to form the basis of novel antidyskinetic therapies for PD.


Subject(s)
Dyskinesia, Drug-Induced/drug therapy , Levodopa/toxicity , Narcotic Antagonists/pharmacology , Parkinsonian Disorders/drug therapy , Receptors, Opioid, mu/antagonists & inhibitors , Animals , Antiparkinson Agents/toxicity , CHO Cells , Cricetinae , Cricetulus , Disease Models, Animal , Drug Interactions , Female , Humans , Macaca fascicularis , Male , Naltrexone/pharmacology
17.
Methods Mol Biol ; 685: 3-25, 2011.
Article in English | MEDLINE | ID: mdl-20981516

ABSTRACT

High-throughput chemistry (HTC) is approaching its 20-year anniversary. Since 1992, some 5,000 chemical libraries, prepared for the purpose of biological investigation and drug discovery, have been published in the scientific literature. This review highlights the key events in the history of HTC with emphasis on library design. A historical perspective on the design of screening, targeted, and optimization libraries and their application is presented. Design strategies pioneered in the 1990s remain viable in the twenty-first century.


Subject(s)
Drug Discovery/methods , Small Molecule Libraries , Drug Discovery/history , Drug Evaluation, Preclinical , History, 20th Century , History, 21st Century , Humans , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Small Molecule Libraries/history , Small Molecule Libraries/pharmacology
19.
Bioorg Med Chem Lett ; 20(1): 387-91, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19919895

ABSTRACT

A lead optimization campaign in our previously reported sulfamoyl benzamide class of CB(2) agonists was conducted to improve the in vitro metabolic stability profile in this series while retaining high potency and selectivity for the CB(2) receptor. From this study, compound 14, N-(3,4-dimethyl-5-(morpholinosulfonyl)phenyl)-2,2-dimethylbutanamide, was identified as a potent and selective CB(2) agonist exhibiting moderate in vitro metabolic stability and oral bioavailability. Compound 14 demonstrated in vivo efficacy in a rat model of post-surgical pain.


Subject(s)
Aniline Compounds/chemistry , Benzamides/chemistry , Receptor, Cannabinoid, CB2/agonists , Sulfonamides/chemistry , Aniline Compounds/chemical synthesis , Aniline Compounds/pharmacokinetics , Animals , Benzamides/chemical synthesis , Benzamides/pharmacokinetics , Humans , Microsomes, Liver/metabolism , Pain/drug therapy , Rats , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB2/metabolism , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/pharmacokinetics
20.
Open Med Chem J ; 3: 8-13, 2009 Nov 18.
Article in English | MEDLINE | ID: mdl-19966921

ABSTRACT

A series of imidazopyrimidine derivatives with the general formula I was synthesized and identified as potent inhibitors of iNOS dimer formation, a prerequisite for proper functioning of the enzyme. Stille and Negishi coupling reactions were used as key steps to form the carbon-carbon bond connecting the imidazopyrimidine core to the central cycloalkenyl, cycloalkyl and phenyl ring templates.

SELECTION OF CITATIONS
SEARCH DETAIL
...