Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Microbiol ; 15: 1393923, 2024.
Article in English | MEDLINE | ID: mdl-38812683

ABSTRACT

The spread of antimicrobial resistance (AMR) in animal husbandry is usually attributed to the use of antibiotics and poor hygiene and biosecurity. We therefore conducted experimental trials to improve hygiene management in weaned pig houses and assessed the impact on the spread. For each of the two groups examined, the experimental group (EG) and the control group (CG), three replicate batches of piglets from the same pig breeder, kept in pre-cleaned flat decks, were analyzed. In the flat decks of the experimental groups, the hygiene conditions (cleaning, disinfection, dust removal and fly control) were improved, while regular hygiene measures were carried out in the control groups. The occurrence and spread of AMR were determined in Escherichia coli (E. coli; resistance indicator) using cultivation-dependent (CFU) and -independent (qPCR) methods as well as whole genome sequencing of isolates in samples of various origins, including feces, flies, feed, dust and swabs. Surprisingly, there were no significant differences (p > 0.05) in the prevalence of resistant E. coli between the flat decks managed with conventional techniques and those managed with improved techniques. Selective cultivation delivered ampicillin- and sulfonamide-resistant E. coli proportions of up to 100% and 1.2%, respectively. While 0.5% E. coli resistant to cefotaxime and no ciprofloxacin resistance were detected. There was a significant difference (p < 0.01) in the abundance of the blaTEM-1 gene in fecal samples between EG and CG groups. The colonization of piglets with resistant pathogens before arrival, the movement of flies in the barn and the treatment of bacterial infections with antibiotics obscured the effects of hygiene improvement. Biocide tolerance tests showed no development of resistance to the farm regular disinfectant. Managing hygiene alone was insufficient for reducing antimicrobial resistances in piglet rearing. We conclude that the complex factors contributing to the presence and distribution of AMR in piglet barns underscore the necessity for a comprehensive management strategy.

2.
Environ Microbiol ; 25(6): 1174-1185, 2023 06.
Article in English | MEDLINE | ID: mdl-36772962

ABSTRACT

The regular use of antimicrobials in livestock production selects for antimicrobial resistance. The potential impact of this practice on human health needs to be studied in more detail, including the role of the environment for the persistence and transmission of antimicrobial-resistant bacteria. During an investigation of a pig farm and its surroundings in Brandenburg, Germany, we detected abundant cephalosporin- and fluoroquinolone-resistant Escherichia coli in pig faeces, sedimented dust, and house flies (Musca domestica). Genome sequencing of E. coli isolates revealed large phylogenetic diversity and plasmid-borne extended-spectrum beta lactamase (ESBL) genes CTX-M-1 in multiple strains. [Correction added on 28 February 2023, after first online publication: In the preceding sentence, 'and TEM-1' was previously included but has been deleted in this version.] Close genomic relationships indicated frequent transmission of antimicrobial-resistant E. coli between pigs from different herds and across buildings of the farm and suggested dust and flies as vectors for dissemination of faecal pathogens. Strikingly, we repeatedly recovered E. coli from flies collected up to 2 km away from the source, whose genome sequences were identical or closely related to those from pig faeces isolates, indicating the fly-associated transport of diverse ESBL-producing E. coli from the pig farm into urban habitation areas. The observed proximity of contaminated flies to human households poses a risk of transmission of antimicrobial-resistant enteric pathogens from livestock to man.


Subject(s)
Escherichia coli Infections , Houseflies , Male , Animals , Humans , Swine , Escherichia coli , Cephalosporins/pharmacology , Houseflies/genetics , Farms , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Fluoroquinolones/pharmacology , Phylogeny , beta-Lactamases/genetics , Monobactams , Genome, Bacterial , Anti-Bacterial Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...