Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Insect Biochem Mol Biol ; 141: 103706, 2022 02.
Article in English | MEDLINE | ID: mdl-34974083

ABSTRACT

The insulin-IGF-signalling (IIS) pathway regulates key processes in metazoans. The pathway is activated through the binding of the ligands, which in insects are usually referred to as insulin-like peptides (ILPs), to a class of receptor tyrosine kinases, the insect insulin receptor. To study the pathway regulation, it is therefore essential to understand how ILPs are produced and released. In this study we analysed the factors that regulate the expression of the seven ILPs (BgILPs) expressed in adult females of the German cockroach, Blattella germanica. The results showed that the starvation-induced expression reduction of brain BgILP3, 5 and 6 and fat body BgILP7 is not due to reduced juvenile hormone (JH) or decreased TOR pathway activity. In addition, depletion of FoxO in starved females did not correct the low levels of these BgILPs, but even reduced further BgILP5 expression, indicating the need to maintain certain basal levels of BgILP5 even during starvation. Furthermore, JH promoted increased BgILP5 and decreased BgILP3 expression in the brain, an effect that required Methoprene-tolerant (Met), the JH receptor, but not Krüppel homolog 1 (Kr-h1), the main JH transducer. On the other hand, JH inhibited the expression of BgILP7 in the fat body, although in this case, the action required both Met and Kr-h1. In addition, JH reduction treatments produced a decrease in the expression of the insulin receptor in the fat body, which suggests an increase in IIS. The results show a peculiar regulation of ILP expression in adult B. germanica females, which is clearly different than that seen in other species. This is understandable given that gene duplications in recent clades have resulted in different sets of ILP genes, involving substantial changes in gene regulatory networks.


Subject(s)
Blattellidae/genetics , Fat Body/metabolism , Gene Expression Regulation , Insect Hormones/genetics , Neuropeptides/genetics , Animals , Brain/metabolism , Female , Gene Expression Profiling
2.
Insect Sci ; 25(5): 787-796, 2018 Oct.
Article in English | MEDLINE | ID: mdl-28374493

ABSTRACT

Juvenile hormone (JH), a sesquiterpenoid synthetized by the insect corpora allata (CA), plays critical roles in metamorphosis and reproduction. Penultimate or last step of JH synthesis is catalyzed by juvenile hormone acid O-methyltransferase (JHAMT). Here we report the cloning and expression analysis of the JHAMT orthologue in the cockroach, Blattella germanica (L.) (BgJHAMT). BgJHAMT is mainly expressed in CA, with only expression traces in ovary. Three different isoforms, differing in the 3'-UTR sequence, were identified. Isoform A shows between 35 and 65 times higher expression than B and C in CA from penultimate nymphal instar and adult females. RNAi-triggered knock down of BgJHAMT produces a dramatic reduction of JH synthesis, concomitant with a decrease of fat body vitellogenin expression and basal follicle length. BgJHAMT mRNA levels in CA of females along the gonadotrophic cycle parallel, with a slight advancement, JH synthesis profile. BgJHAMT mRNA levels were reduced in starved females and in females in which we reduced nutritional signaling by knocking down insulin receptor and target of rapamycin (TOR). Results show that conditions that modify JH synthesis in adult B. germanica females show parallel changes of BgJHAMT mRNA levels and that the JH-specific branch of the JH synthesis pathway is regulated in the same way as the mevalonate branch. Furthermore, we demonstrate that nutrition and its signaling through the insulin receptor and TOR pathways are essential for activating BgJHAMT expression, which suggests that this enzyme can be a checkpoint for the regulation of JH production in relation to nutritional status.


Subject(s)
Blattellidae/genetics , Gene Expression , Insect Proteins/genetics , Juvenile Hormones/metabolism , Methyltransferases/genetics , Signal Transduction/genetics , Animal Nutritional Physiological Phenomena/genetics , Animals , Blattellidae/growth & development , Blattellidae/metabolism , Female , Insect Proteins/metabolism , Methyltransferases/metabolism , Nymph/genetics , Nymph/growth & development , Nymph/metabolism
3.
Respir Physiol Neurobiol ; 189(3): 624-31, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-23969181

ABSTRACT

In mammals, adaptation to chronic hypoxia requires the integrity of the arterial chemoreceptors, specially the carotid body (CB). Chronic hypoxia increases the sensibility of the CB by acting on the receptor cells, but there is limited information on the effects of chronic hypoxia on the sensory neurons that innervate the CB. Therefore, we studied the responses evoked by ACh and ATP, the main transmitters that generate the chemoafferent activity, on the petrosal ganglion (PG) of rabbits exposed to chronic normobaric hypoxia (CNH) during fourteen days. ATP and ACh increased the activity of PG neurons in a dose-dependent manner, in a similar way than in rabbits not exposed to hypoxia (naïve). However, the duration of the responses were significantly increased by CNH, with the mean maximal responses to ACh and ATP increased by a factor of two and four, respectively. Our results suggest that CNH increases duration of the responses by modifying the expression and/or content of ACh and ATP receptors.


Subject(s)
Acetylcholine/pharmacology , Adenosine Triphosphate/pharmacology , Glossopharyngeal Nerve/cytology , Hypoxia/physiopathology , Sensory Receptor Cells/drug effects , Action Potentials/drug effects , Analysis of Variance , Animals , Body Weight/drug effects , Dose-Response Relationship, Drug , Male , Rabbits , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...