Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Photochem Photobiol Sci ; 16(6): 854-860, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-28492632

ABSTRACT

One-dimensional titanate nanotubes (H2Ti2O5·H2O) functionalized with silver nanoparticles (AgNPs) exhibited unique properties for the effective inactivation of the Gram-negative Escherichia coli within 45 minutes under irradiation using a 65 W halogen lamp. The pathway of the photo-assisted catalytic inactivation was examined by SEM and TEM using a reproducible biological protocol for sample preparations. The membrane integrity of the bacteria was damaged due to the oxidative stress caused by the reactive oxygen species, the bacteriostatic effect of the highly-dispersed-surface AgNPs (∼5 nm) and the sharp nanotube penetration that induced the cell death.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/radiation effects , Nanotubes/chemistry , Silver/pharmacology , Titanium/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Photochemical Processes , Silver/chemistry , Titanium/chemistry
2.
ACS Appl Mater Interfaces ; 8(46): 31625-31637, 2016 Nov 23.
Article in English | MEDLINE | ID: mdl-27783499

ABSTRACT

Antifungal silver nanocomposites inspired by titanate nanotubes (AgTNTs) were successfully evaluated for the effective inactivation of the phytopathogenic fungus Botrytis cinerea within 20 min. One-dimensional H2Ti3O7 nanotubes functionalized with silver nanoparticles (AgNPs) exhibit unique surface and antifungal properties for the photoinactivation of B. cinerea. Nanostructured titanates were synthesized by the eco-friendly, practical, microwave-induced, hydrothermal method followed by a highly monodispersive AgNP UV-photodeposition. Protonated nanotubes of ∼11 nm in diameter and four-layers displayed high surface areas, 300 m2/g, with a size functionalization of 5 nm for the AgNPs. UV-vis DRS and XPS allowed the characterization and/or quantification of surface reactive species and cytotoxic silver species such as Ag°, Ag+. The effective biocidal properties of the nanocomposites were confirmed by using the well-known Gram-negative bacteria Escherichia coli, and then proceeding to the effective inactivation of the phytopathogenic fungus under visible light. The photoassisted inactivation mechanism was examined by HAADF-STEM, HRTEM, and FESEM electronic microscopies. A plasmalemma invagination due to oxidative stress caused by reactive oxygen, silver cytotoxicity species, and AgTNT sharp morphology damage expands the conidia to induce the cell death. The impact of the eco-friendly inactivation is significant because of the ease with which it is carried out and the possibility of being performed in situ with plants like tomato and grapes, which are ranked among the most valuable agricultural products worldwide.


Subject(s)
Nanocomposites , Antifungal Agents , Botrytis , Solanum lycopersicum , Metal Nanoparticles , Nanotubes , Silver
SELECTION OF CITATIONS
SEARCH DETAIL
...