Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Psychobiol ; 63(8): e22217, 2021 12.
Article in English | MEDLINE | ID: mdl-34813094

ABSTRACT

The current study examined the effects of variability on infant event-related potential (ERP) data editing methods. A widespread approach for analyzing infant ERPs is through a trial-by-trial editing process. Researchers identify electroencephalogram (EEG) channels containing artifacts and reject trials that are judged to contain excessive noise. This process can be performed manually by experienced researchers, partially automated by specialized software, or completely automated using an artifact-detection algorithm. Here, we compared the editing process from four different editors-three human experts and an automated algorithm-on the final ERP from an existing infant EEG dataset. Findings reveal that agreement between editors was low, for both the numbers of included trials and of interpolated channels. Critically, variability resulted in differences in the final ERP morphology and in the statistical results of the target ERP that each editor obtained. We also analyzed sources of disagreement by estimating the EEG characteristics that each human editor considered for accepting an ERP trial. In sum, our study reveals significant variability in ERP data editing pipelines, which has important consequences for the final ERP results. These findings represent an important step toward developing best practices for ERP editing methods in infancy research.


Subject(s)
Evoked Potentials , Signal Processing, Computer-Assisted , Algorithms , Artifacts , Electroencephalography/methods , Humans , Infant
2.
Neuropsychologia ; 126: 92-101, 2019 03 18.
Article in English | MEDLINE | ID: mdl-28487250

ABSTRACT

Infants are sensitive to structure and patterns within continuous streams of sensory input. This sensitivity relies on statistical learning, the ability to detect predictable regularities in spatial and temporal sequences. Recent evidence has shown that infants can detect statistical regularities in action sequences they observe, but little is known about the neural process that give rise to this ability. In the current experiment, we combined electroencephalography (EEG) with eye-tracking to identify electrophysiological markers that indicate whether 8-11-month-old infants detect violations to learned regularities in action sequences, and to relate these markers to behavioral measures of anticipation during learning. In a learning phase, infants observed an actor performing a sequence featuring two deterministic pairs embedded within an otherwise random sequence. Thus, the first action of each pair was predictive of what would occur next. One of the pairs caused an action-effect, whereas the second did not. In a subsequent test phase, infants observed another sequence that included deviant pairs, violating the previously observed action pairs. Event-related potential (ERP) responses were analyzed and compared between the deviant and the original action pairs. Findings reveal that infants demonstrated a greater Negative central (Nc) ERP response to the deviant actions for the pair that caused the action-effect, which was consistent with their visual anticipations during the learning phase. Findings are discussed in terms of the neural and behavioral processes underlying perception and learning of structured action sequences.


Subject(s)
Anticipation, Psychological/physiology , Cerebral Cortex/physiology , Child Development/physiology , Evoked Potentials/physiology , Motor Activity/physiology , Probability Learning , Visual Perception/physiology , Electroencephalography , Eye Movement Measurements , Female , Humans , Infant , Male
3.
PLoS One ; 10(7): e0134339, 2015.
Article in English | MEDLINE | ID: mdl-26222059

ABSTRACT

In a typical visual Event Related Potential (ERP) study, the stimulus is presented centrally on the screen. Normally an ERP response will be measured provided that the participant directs their gaze towards the stimulus. The aim of this study was to assess how the N400 component of an ERP was affected when the stimulus was presented in the foveal, parafoveal or peripheral vision of the participant's visual field. Utilizing stimuli that have previously produced an N400 response to action incongruities, the same stimuli sequences were presented at 0°, 4°, 8° and 12° of visual angle from a fixation location. In addition to the EEG data, eye tracking data were recorded to act as a fixation control method and to allow for eye artifact detection. The results show a significant N400 effect in the right parieto-temporal electrodes within the 0° visual angle condition. For the other conditions, the N400 effect was reduced (4°) or not present (8° and 12°). Our results suggest that the disappearance of the N400 effect with eccentricity is due to the fixation distance to the stimulus. However, variables like attentional allocation could have also had an impact on the results. This study highlights the importance of presenting a stimulus within the foveal vision of the participant in order to maximize ERP effects related to higher order cognitive processes.


Subject(s)
Evoked Potentials, Visual/physiology , Fixation, Ocular/physiology , Adolescent , Adult , Artifacts , Attention/physiology , Electrodes , Electroencephalography/instrumentation , Electroencephalography/statistics & numerical data , Female , Fovea Centralis/physiology , Humans , Male , Middle Aged , Photic Stimulation , Visual Fields/physiology , Visual Perception/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...