Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Membranes (Basel) ; 12(5)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35629797

ABSTRACT

Point-of-use ceramic filters are one of the strategies to address problems associated with waterborne diseases to remove harmful microorganisms in water sources prior to its consumption. In this study, development of adsorption-based ceramic depth filters composed of alumina platelets was achieved using spray granulation (calcined at 800 °C). Their virus retention performance was assessed using cartridges containing granular material (4 g) with two virus surrogates: MS2 and fr bacteriophages. Both materials showed complete removal, with a 7 log10 reduction value (LRV) of MS2 up to 1 L. MgAl2O4-modified Al2O3 granules possessed a higher MS2 retention capacity, contrary to the shortcomings of retention limits in pure Al2O3 granules. No significant decline in the retention of fr occurred during filtration tests up to 2 L. The phase composition and morphology of the materials were preserved during filtration, with no magnesium or aluminum leakage during filtration, as confirmed by X-ray diffractograms, electron micrographs, and inductively coupled plasma-optical emission spectrometry. The proposed MgAl2O4-modified Al2O3 granular ceramic filter materials offer high virus retention, achieving the criterion for virus filtration as required by the World Health Organization (LRV ≥ 4). Owing to their high thermal and chemical stability, the developed materials are thus suitable for thermal and chemical-free regeneration treatments.

2.
RSC Adv ; 11(50): 31547-31556, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-35496858

ABSTRACT

Activated carbon (AC) exhibits superior sorption properties compared to other porous materials, due to well-developed porous structures and high surface areas. Therefore, it is widely applied in its various forms in water purification to remove a diverse range of contaminating species. The presence of viruses in fresh water bodies poses a serious issue for human health. However, AC has not yet been commonly applied to waterborne virus removal. In this study, we present oxidation and copper impregnation treatment procedures of activated carbon fibers (ACFs) that resulted in porous structure and surface chemistry modifications. The effect of these modifications on virus removal was investigated by experimental flow studies and revealed up to 2.8 log10 reduction value (LRV) and 3.6 LRV of MS2 bacterio-phages for non-modified and oxidized ACFs, respectively, emphasizing the advantages of ACF surface functionalization. Copper modified fibers demonstrated a high sensitivity to media composition, resulting in a release of metal and therefore limited virucidal capacity.

3.
Water Res X ; 9: 100058, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32613183

ABSTRACT

A leading challenge in drinking water treatment is to remove small-sized viruses from the water in a simple and efficient manner. Multi-walled carbon nanotubes (MWCNT) are new generation adsorbents with previously demonstrated potential as filter media to improve virus removal. This study therefore aimed to evaluate the field applicability of MWCNT-filters for virus removal in water containing natural organic matter (NOM) as co-solute to viruses, using batch equilibrium experiments. Contrary to previous studies, our results showed with MS2 bacteriophages single-solute systems that the affinity of MWCNT for MS2 was low, since after 3 h of equilibration only 4 log10 reduction value (LRV) of MS2 (20 mL at an initial concentration of 106 PFU MS2/mL) were reached. Single solute experiments with Suwannee river NOM (SRNOM) performed with environmentally-relevant concentrations showed MWCNT surface saturation at initial SRNOM concentrations between 10 and 15 mgC/L, for water pH between 5.2 and 8.7. These results suggested that at NOM:virus ratios found in natural waters, the NOM would competitively suppress virus adsorption onto MWCNT, even at low NOM concentrations. We confirmed this expectation with SRNOM-MS2 co-solute experiments, which showed an exponential decrease of the MS2 LRV by MWCNT with an increase in the initial SRNOM concentration. More interestingly, we showed that pre-equilibrating MWCNT with a SRNOM solution at a concentration as low as 0.4 mgC/L resulted in a LRV decrease of 3 for MS2, due to the formation of a negatively charged SRNOM adlayer on the MWCNT surface. Complementary batch experiments with natural NOM-containing waters and competition experiments with SRNOM in the presence of CaCl2 confirmed that the presence of NOM in waters challenges virus removal by MWCNT-filters, irrespective of the concentration and type of NOM and also in the presence of Ca2+. We therefore conclude that MWCNT-filters produced with commercially available pristine MWCNT cannot be considered as a viable technology for drinking water virus removal.

4.
Environ Sci Technol ; 54(2): 1214-1222, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31855599

ABSTRACT

Virus removal can be successfully achieved based on an electrostatic adsorption mechanism. The key requirement for this process is to develop filter materials that can be produced by low-cost technologies and are suitable in large-scale production for real applications. In this study, we report development of spray-dried alumina granules modified with copper (oxide) nanoparticles and critically assess the effect of copper oxidation state on virus removal capacity. Using plate-shaped alumina as a support material resulted in porous structure, which in turn ensured prolonged contact time of contaminated water with the material. Subsequently, copper (oxide) nanoparticles provided a large number of adsorption sites. Flow experiments revealed that copper(I) oxide and metallic copper were the active phases in virus removal and 99.9% of MS2 bacteriophages could be removed. However, almost no virus removal was observed in the presence of copper(II) oxide. Contrasting virus removal characteristics are associated with the different surface charge of copper species, as determined by zeta potential measurements.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Aluminum Oxide , Copper , Filtration , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...