Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
RSC Adv ; 14(14): 9619-9630, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38525060

ABSTRACT

Nitric oxide (NO) is an important signalling molecule which modulates several biological and pathological processes. Dimethylarginine dimethylaminohydrolase 1 (DDAH1) plays a key role indirectly regulating NO concentrations in the body. It has been shown that DDAH1 inhibition may be an effective therapeutic strategy in certain pathological states in which excessive NO is produced. In recent years, specific DDAH1 inhibitors have shown promise in suppressing abnormal neovascularization in cancer. However, the available DDAH1 inhibitors lack potency and selectivity and are mostly arginine-based. Further, these inhibitors display unfavourable pharmacokinetics and have not been tested in humans. Thus, the development of potent, selective, and chemically diverse DDAH1 inhibitors is essential. In this review, we examine the structure activity relationships (SARs) and X-ray crystal structures of known DDAH1 inhibitors. Then, we discuss current challenges in the design and development of novel DDAH1 inhibitors and provide future directions for developing potent and chemically diverse compounds.

2.
Bioorg Med Chem ; 72: 116970, 2022 10 15.
Article in English | MEDLINE | ID: mdl-36063653

ABSTRACT

Nitric oxide (NO) is a signalling molecule that controls a multitude of regulatory functions including neurotransmission, vascular tone, immune response, and angiogenesis. Regulating NO concentrations in cells using small molecules is an active area of research in the treatment of several pathologies such as cardiovascular disease, cancer, and inflammatory conditions. Small molecule-inhibition of critical NO regulatory enzymes, NO synthase (NOS), arginase, and dimethylarginine dimethyaminohydrolase-1 (DDAH1), has shown therapeutic benefits as well as limitations and is a focus of current research.In recent years, DDAH1 has been explored as a potential target to indirectly regulate NO in diseases characterized by excessive NO production. This review discusses the biological and pathophysiological role of the NO pathway, the existing inhibitors of NOS, arginase and DDAH1, and the conventional and structure-guided structure-activity relationship studies involved in their discovery. The key structural elements of amino acid-derived inhibitors responsible for selective inhibition of each enzyme, and the chemical features responsible for dual enzyme inhibition are also discussed. Finally, a synthetic scheme for developing both selective and dual inhibitors using common starting materials is provided, offering unique insights in the quest for the rational design of novel NO pathway inhibitors.


Subject(s)
Arginase , Nitric Oxide , Amidohydrolases , Arginine/metabolism , Arginine/pharmacology , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Nitric Oxide/metabolism , Nitric Oxide Synthase
SELECTION OF CITATIONS
SEARCH DETAIL