Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 1550: 47-60, 2017.
Article in English | MEDLINE | ID: mdl-28188522

ABSTRACT

Phosphorylation is among the most important post-translational modifications of proteins and has numerous regulatory functions across all domains of life. However, phosphorylation is often substoichiometric, requiring selective and sensitive methods to enrich phosphorylated peptides from complex cellular digests. Various methods have been devised for this purpose and we have recently described a Fe-IMAC HPLC column chromatography setup which is capable of comprehensive, reproducible, and selective enrichment of phosphopeptides out of complex peptide mixtures. In contrast to other formats such as StageTips or batch incubations using TiO2 or Ti-IMAC beads, Fe-IMAC HPLC columns do not suffer from issues regarding incomplete phosphopeptide binding or elution and enrichment efficiency scales linearly with the amount of starting material. Here, we provide a step-by-step protocol for the entire phosphopeptide enrichment procedure including sample preparation (lysis, digestion, desalting), Fe-IMAC column chromatography (column setup, operation, charging), measurement by LC-MS/MS (nHPLC gradient, MS parameters) and data analysis (MaxQuant). To increase throughput, we have optimized several key steps such as the gradient time of the Fe-IMAC separation (15 min per enrichment), the number of consecutive enrichments possible between two chargings (>20) and the column recharging itself (<1 h). We show that the application of this protocol enables the selective (>90 %) identification of more than 10,000 unique phosphopeptides from 1 mg of HeLa digest within 2 h of measurement time (Q Exactive Plus).


Subject(s)
Imidazoles/chemistry , Iron/chemistry , Phosphoproteins , Proteome , Proteomics/methods , Cell Line , Chromatography, Liquid , Humans , Phosphopeptides , Software , Statistics as Topic , Tandem Mass Spectrometry , Workflow
2.
Biomed Res Int ; 2015: 343501, 2015.
Article in English | MEDLINE | ID: mdl-26120581

ABSTRACT

Spontaneous preterm birth significantly contributes to the overall neonatal morbidity associated with preterm deliveries. Nearly 50% of cases are associated with microbial invasion of the amniotic cavity followed by an inflammatory response. Robust diagnostic tools for neonates jeopardized by infection and inflammation may thus decrease the overall neonatal morbidity substantially. Amniotic fluid retrieved during labor retains fetal and pregnancy-related protein fingerprint and its sampling does not place any unwanted stress on women. Using exploratory and targeted methods we analyzed proteomes of amniotic fluid sampled at the end of spontaneous preterm labor prior to delivery from women with and without infection and inflammation. Exploratory data indicated several amniotic fluid proteins to be associated with infectious-inflammatory complications in spontaneous preterm birth. LC-SRM analysis subsequently verified statistically significant changes in lipocalin-1 (P = 0.047 and AUC = 0.67, P = 0.046), glycodelin (P = 0.013 and AUC = 0.73, P = 0.013), and nicotinamide phosphoribosyltransferase (P = 0.018 and AUC = 0.71, P = 0.01).


Subject(s)
Inflammation/genetics , Pregnancy Complications, Infectious/genetics , Premature Birth/genetics , Proteome/genetics , Adult , Amniotic Fluid/metabolism , Female , Humans , Inflammation/complications , Peptide Mapping , Peripartum Period/genetics , Pregnancy , Pregnancy Complications, Infectious/pathology , Premature Birth/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...