Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Air Waste Manag Assoc ; 73(10): 730-736, 2023 10.
Article in English | MEDLINE | ID: mdl-37610309

ABSTRACT

Particulate matter (PM) concentrations have decreased dramatically over the past 20 years, thus lower method detection limits (MDL) are required for these measurements. Energy-dispersive X-ray fluorescence (XRF) spectroscopy is used to quantify multiple elements simultaneously in the U.S. Environmental Protection Agency (EPA) Chemical Speciation Network (CSN). Inductively-coupled plasma mass spectrometry (ICP-MS) is an alternative analysis with lower MDL for elements. Here, we present a side-by-side comparison of XRF and ICP-MS for elements in PM2.5 samples collected via the EPA's CSN. For ICP-MS, a simple extraction and ICP-MS analysis technique was applied to a wide variety of samples to minimize effort and cost and serve as a feasibility test for a large monitoring network. Filter samples (N = 549) from various urban locations across the US were analyzed first analyzed via XRF at UC Davis and then ICP-MS at RTI International. Both methods measured 29 of the same elements out of the 33 usually reported to CSN. Of these 29, 14 elements (Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb) were found to be frequently detected (i.e. had more than 10% of values above both XRF and ICP-MS MDL). ICP-MS was found to have lower MDL for 26 out of 29 elements, namely Na, Mg, Al, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, As, Se, Rb, Sr, Zr, Ag, Cd, In, Sn, Sb, Cs, Ba, Ce, Pb; conversely, XRF had lower MDL for 3 elements, namely, P, K, Zn. Intra-method quality checks using (1) inter-elemental inspection of scatter plots using a priori knowledge of element sources and (2) scatter plots of routine versus collocated measurements reveal that ICP-MS exhibits better measurement precision. Lower detection limits for element measurements in nationwide PM monitoring networks would benefit human-health and source apportionment research.Implications: We demonstrate that ICP-MS with adilute-acid digestion method would significantly improve the element detection rates and thus be avaluable addition to the current analysis techniques for airborne PM samples in anationwide monitoring network. In this paper, we show that a hybrid method of elemental analysis for airborne particulate matter (PM) would significantly improve the detection rates for elements in PM. This would be a valuable addition to the current analysis techniques for airborne PM samples in nationwide and other large-scale monitoring networks, such as the EPA's Chemical Speciation Network (CSN). The techniques explored in this study (i.e., X-ray Fluorescence Spectroscopy or XRF and Inductively Coupled Plasma-Mass Spectrometry or ICP-MS) are relevant to the PM monitoring and regulatory community audience of JAWMA, especially agencies and states that are already involved in CSN. In addition, our results outline considerations that give insight on factors to consider for other large-scale and long-term ambient air monitoring efforts.


Subject(s)
Lead , Particulate Matter , United States , Humans , United States Environmental Protection Agency
2.
J Geophys Res Atmos ; 125(18): e2020JD032706, 2020 Sep 27.
Article in English | MEDLINE | ID: mdl-33282612

ABSTRACT

Sulfur compounds are an important constituent of particulate matter, with impacts on climate and public health. While most sulfur observed in particulate matter has been assumed to be sulfate, laboratory experiments reveal that hydroxymethanesulfonate (HMS), an adduct formed by aqueous phase chemical reaction of dissolved HCHO and SO2, may be easily misinterpreted in measurements as sulfate. Here we present observational and modeling evidence for a ubiquitous global presence of HMS. We find that filter samples collected in Shijiazhuang, China, and examined with ion chromatography within 9 days show as much as 7.6 µg m-3 of HMS, while samples from Singapore examined 9-18 months after collection reveal ~0.6 µg m-3 of HMS. The Shijiazhuang samples show only minor traces of HMS 4 months later, suggesting that HMS had decomposed over time during sample storage. In contrast, the Singapore samples do not clearly show a decline in HMS concentration over 2 months of monitoring. Measurements from over 150 sites, primarily derived from the IMPROVE network across the United States, suggest the ubiquitous presence of HMS in at least trace amounts as much as 60 days after collection. The degree of possible HMS decomposition in the IMPROVE observations is unknown. Using the GEOS-Chem chemical transport model, we estimate that HMS may account for 10% of global particulate sulfur in continental surface air and over 25% in many polluted regions. Our results suggest that reducing emissions of HCHO and other volatile organic compounds may have a co-benefit of decreasing particulate sulfur.

SELECTION OF CITATIONS
SEARCH DETAIL
...