Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
J Neuroimmune Pharmacol ; 19(1): 25, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38789639

ABSTRACT

Based on emerging evidence on the role for specific single-nucleotide variants (SNVs) in EIF2AK3 encoding the integrated stress response kinase PERK, in neurodegeneration, we assessed the association of EIF2AK3 SNVs with neurocognitive performance in people with HIV (PWH) using a candidate gene approach. This retrospective study included the CHARTER cohort participants, excluding those with severe neuropsychiatric comorbidities. Genome-wide data previously obtained for 1047 participants and targeted sequencing of 992 participants with available genomic DNA were utilized to interrogate the association of three noncoding and three coding EIF2AK3 SNVs with the continuous global deficit score (GDS) and global neurocognitive impairment (NCI; GDS ≥ 0.5) using univariable and multivariable methods, with demographic, disease-associated, and treatment characteristics as covariates. The cohort characteristics were as follows: median age, 43.1 years; females, 22.8%; European ancestry, 41%; median CD4 + T cell counts, 175/µL (nadir) and 428/µL (current). At first assessment, 70.5% used ART and 68.3% of these had plasma HIV RNA levels ≤ 200 copies/mL. All three noncoding EIF2AK3 SNVs were associated with GDS and NCI (all p < 0.05). Additionally, 30.9%, 30.9%, and 41.2% of participants had at least one risk allele for the coding SNVs rs1805165 (G), rs867529 (G), and rs13045 (A), respectively. Homozygosity for all three coding SNVs was associated with significantly worse GDS (p < 0.001) and more NCI (p < 0.001). By multivariable analysis, the rs13045 A risk allele, current ART use, and Beck Depression Inventory-II value > 13 were independently associated with GDS and NCI (p < 0.001) whereas the other two coding SNVs did not significantly correlate with GDS or NCI after including rs13045 in the model. The coding EIF2AK3 SNVs were associated with worse performance in executive functioning, motor functioning, learning, and verbal fluency. Coding and non-coding SNVs of EIF2AK3 were associated with global NC and domain-specific performance. The effects were small-to-medium in size but present in multivariable analyses, raising the possibility of specific SNVs in EIF2AK3 as an important component of genetic vulnerability to neurocognitive complications in PWH.


Subject(s)
HIV Infections , Polymorphism, Single Nucleotide , eIF-2 Kinase , Adult , Female , Humans , Male , Middle Aged , Cognitive Dysfunction/genetics , Cohort Studies , eIF-2 Kinase/genetics , HIV Infections/genetics , HIV Infections/complications , HIV Infections/psychology , Polymorphism, Single Nucleotide/genetics , Retrospective Studies
2.
medRxiv ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38464214

ABSTRACT

Importance: The chromosome 17q21.31 region, containing a 900 Kb inversion that defines H1 and H2 haplotypes, represents the strongest genetic risk locus in progressive supranuclear palsy (PSP). In addition to H1 and H2, various structural forms of 17q21.31, characterized by the copy number of α, ß, and γ duplications, have been identified. However, the specific effect of each structural form on the risk of PSP has never been evaluated in a large cohort study. Objective: To assess the association of different structural forms of 17q.21.31, defined by the copy numbers of α, ß, and γ duplications, with the risk of PSP and MAPT sub-haplotypes. Design setting and participants: Utilizing whole genome sequencing data of 1,684 (1,386 autopsy confirmed) individuals with PSP and 2,392 control subjects, a case-control study was conducted to investigate the association of copy numbers of α, ß, and γ duplications and structural forms of 17q21.31 with the risk of PSP. All study subjects were selected from the Alzheimer's Disease Sequencing Project (ADSP) Umbrella NG00067.v7. Data were analyzed between March 2022 and November 2023. Main outcomes and measures: The main outcomes were the risk (odds ratios [ORs]) for PSP with 95% CIs. Risks for PSP were evaluated by logistic regression models. Results: The copy numbers of α and ß were associated with the risk of PSP only due to their correlation with H1 and H2, while the copy number of γ was independently associated with the increased risk of PSP. Each additional duplication of γ was associated with 1.10 (95% CI, 1.04-1.17; P = 0.0018) fold of increased risk of PSP when conditioning H1 and H2. For the H1 haplotype, addition γ duplications displayed a higher odds ratio for PSP: the odds ratio increases from 1.21 (95%CI 1.10-1.33, P = 5.47 × 10-5) for H1ß1γ1 to 1.29 (95%CI 1.16-1.43, P = 1.35 × 10-6) for H1ß1γ2, 1.45 (95%CI 1.27-1.65, P = 3.94 × 10-8) for H1ß1γ3, and 1.57 (95%CI 1.10-2.26, P = 1.35 × 10-2) for H1ß1γ4. Moreover, H1ß1γ3 is in linkage disequilibrium with H1c (R2 = 0.31), a widely recognized MAPT sub-haplotype associated with increased risk of PSP. The proportion of MAPT sub-haplotypes associated with increased risk of PSP (i.e., H1c, H1d, H1g, H1o, and H1h) increased from 34% in H1ß1γ1 to 77% in H1ß1γ4. Conclusions and relevance: This study revealed that the copy number of γ was associated with the risk of PSP independently from H1 and H2. The H1 haplotype with more γ duplications showed a higher odds ratio for PSP and were associated with MAPT sub-haplotypes with increased risk of PSP. These findings expand our understanding of how the complex structure at 17q21.31 affect the risk of PSP.

3.
Life Sci Alliance ; 7(5)2024 May.
Article in English | MEDLINE | ID: mdl-38418088

ABSTRACT

Detecting structural variants (SVs) in whole-genome sequencing poses significant challenges. We present a protocol for variant calling, merging, genotyping, sensitivity analysis, and laboratory validation for generating a high-quality SV call set in whole-genome sequencing from the Alzheimer's Disease Sequencing Project comprising 578 individuals from 111 families. Employing two complementary pipelines, Scalpel and Parliament, for SV/indel calling, we assessed sensitivity through sample replicates (N = 9) with in silico variant spike-ins. We developed a novel metric, D-score, to evaluate caller specificity for deletions. The accuracy of deletions was evaluated by Sanger sequencing. We generated a high-quality call set of 152,301 deletions of diverse sizes. Sanger sequencing validated 114 of 146 detected deletions (78.1%). Scalpel excelled in accuracy for deletions ≤100 bp, whereas Parliament was optimal for deletions >900 bp. Overall, 83.0% and 72.5% of calls by Scalpel and Parliament were validated, respectively, including all 11 deletions called by both Parliament and Scalpel between 101 and 900 bp. Our flexible protocol successfully generated a high-quality deletion call set and a truth set of Sanger sequencing-validated deletions with precise breakpoints spanning 1-17,000 bp.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/genetics , Whole Genome Sequencing/methods
4.
medRxiv ; 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38234807

ABSTRACT

Background: Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease characterized by the accumulation of aggregated tau proteins in astrocytes, neurons, and oligodendrocytes. Previous genome-wide association studies for PSP were based on genotype array, therefore, were inadequate for the analysis of rare variants as well as larger mutations, such as small insertions/deletions (indels) and structural variants (SVs). Method: In this study, we performed whole genome sequencing (WGS) and conducted association analysis for single nucleotide variants (SNVs), indels, and SVs, in a cohort of 1,718 cases and 2,944 controls of European ancestry. Of the 1,718 PSP individuals, 1,441 were autopsy-confirmed and 277 were clinically diagnosed. Results: Our analysis of common SNVs and indels confirmed known genetic loci at MAPT, MOBP, STX6, SLCO1A2, DUSP10, and SP1, and further uncovered novel signals in APOE, FCHO1/MAP1S, KIF13A, TRIM24, TNXB, and ELOVL1. Notably, in contrast to Alzheimer's disease (AD), we observed the APOE ε2 allele to be the risk allele in PSP. Analysis of rare SNVs and indels identified significant association in ZNF592 and further gene network analysis identified a module of neuronal genes dysregulated in PSP. Moreover, seven common SVs associated with PSP were observed in the H1/H2 haplotype region (17q21.31) and other loci, including IGH, PCMT1, CYP2A13, and SMCP. In the H1/H2 haplotype region, there is a burden of rare deletions and duplications (P = 6.73×10-3) in PSP. Conclusions: Through WGS, we significantly enhanced our understanding of the genetic basis of PSP, providing new targets for exploring disease mechanisms and therapeutic interventions.

5.
Res Sq ; 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37886469

ABSTRACT

Structural variations (SVs) are important contributors to the genetics of human diseases. However, their role in Alzheimer's disease (AD) remains largely unstudied due to challenges in accurately detecting SVs. We analyzed whole-genome sequencing data from the Alzheimer's Disease Sequencing Project (N = 16,905) and identified 400,234 (168,223 high-quality) SVs. Laboratory validation yielded a sensitivity of 82% (85% for high-quality). We found a significant burden of deletions and duplications in AD cases, particularly for singletons and homozygous events. On AD genes, we observed the ultra-rare SVs associated with the disease, including protein-altering SVs in ABCA7, APP, PLCG2, and SORL1. Twenty-one SVs are in linkage disequilibrium (LD) with known AD-risk variants, exemplified by a 5k deletion in complete LD with rs143080277 in NCK2. We also identified 16 SVs associated with AD and 13 SVs linked to AD-related pathological/cognitive endophenotypes. This study highlights the pivotal role of SVs in shaping our understanding of AD genetics.

6.
medRxiv ; 2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37693521

ABSTRACT

Alzheimer's Disease (AD) is a common disorder of the elderly that is both highly heritable and genetically heterogeneous. Here, we investigated the association between AD and both common variants and aggregates of rare coding and noncoding variants in 13,371 individuals of diverse ancestry with whole genome sequence (WGS) data. Pooled-population analyses identified genetic variants in or near APOE, BIN1, and LINC00320 significantly associated with AD (p < 5×10-8). Population-specific analyses identified a haplotype on chromosome 14 including PSEN1 associated with AD in Hispanics, further supported by aggregate testing of rare coding and noncoding variants in this region. Finally, we observed suggestive associations (p < 5×10-5) of aggregates of rare coding rare variants in ABCA7 among non-Hispanic Whites (p=5.4×10-6), and rare noncoding variants in the promoter of TOMM40 distinct of APOE in pooled-population analyses (p=7.2×10-8). Complementary pooled-population and population-specific analyses offered unique insights into the genetic architecture of AD.

7.
medRxiv ; 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37745545

ABSTRACT

Structural variations (SVs) are important contributors to the genetics of numerous human diseases. However, their role in Alzheimer's disease (AD) remains largely unstudied due to challenges in accurately detecting SVs. Here, we analyzed whole-genome sequencing data from the Alzheimer's Disease Sequencing Project (ADSP, N=16,905 subjects) and identified 400,234 (168,223 high-quality) SVs. We found a significant burden of deletions and duplications in AD cases (OR=1.05, P=0.03), particularly for singletons (OR=1.12, P=0.0002) and homozygous events (OR=1.10, P<0.0004). On AD genes, the ultra-rare SVs, including protein-altering SVs in ABCA7, APP, PLCG2, and SORL1, were associated with AD (SKAT-O P=0.004). Twenty-one SVs are in linkage disequilibrium (LD) with known AD-risk variants, e.g., a deletion (chr2:105731359-105736864) in complete LD (R2=0.99) with rs143080277 (chr2:105749599) in NCK2. We also identified 16 SVs associated with AD and 13 SVs associated with AD-related pathological/cognitive endophenotypes. Our findings demonstrate the broad impact of SVs on AD genetics.

8.
Sci Adv ; 7(45): eabg3897, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34739309

ABSTRACT

Age-associated neurodegenerative disorders demonstrating tau-laden intracellular inclusions are known as tauopathies. We previously linked a loss-of-function mutation in the TSC1 gene to tau accumulation and frontotemporal lobar degeneration. Now, we have identified genetic variants in TSC1 that decrease TSC1/hamartin levels and predispose to tauopathies such as Alzheimer's disease and progressive supranuclear palsy. Cellular and murine models of TSC1 haploinsufficiency, as well as human brains carrying a TSC1 risk variant, accumulated tau protein that exhibited aberrant acetylation. This acetylation hindered tau degradation via chaperone-mediated autophagy, thereby leading to its accumulation. Aberrant tau acetylation in TSC1 haploinsufficiency resulted from the dysregulation of both p300 acetyltransferase and SIRT1 deacetylase. Pharmacological modulation of either enzyme restored tau levels. This study substantiates TSC1 as a novel tauopathy risk gene and includes TSC1 haploinsufficiency as a genetic model for tauopathies. In addition, these findings promote tau acetylation as a rational target for tauopathy therapeutics and diagnostic.

9.
Neurobiol Dis ; 146: 105079, 2020 12.
Article in English | MEDLINE | ID: mdl-32961270

ABSTRACT

Microtubule Associated Protein Tau (MAPT) forms proteopathic aggregates in several diseases. The G273R tau mutation, located in the first repeat region, was found by exome sequencing in a patient who presented with dementia and parkinsonism. We herein return to pathological examination which demonstrated tau immunoreactivity in neurons and glia consistent of mixed progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) features. To rationalize the pathological findings, we used molecular biophysics to characterize the mutation in more detail in vitro and in Drosophila. The G273R mutation increases the aggregation propensity of 4-repeat (4R) tau and alters the tau binding affinity towards microtubules (MTs) and F-actin. Tau aggregates in PSP and CBD are predominantly 4R tau. Our data suggest that the G273R mutation induces a shift in pool of 4R tau by lower F-actin affinity, alters the conformation of MT bound 4R tau, while increasing chaperoning of 3R tau by binding stronger to F-actin. The mutation augmented fibrillation of 4R tau initiation in vitro and in glial cells in Drosophila and showed preferential seeding of 4R tau in vitro suggestively causing a late onset 4R tauopathy reminiscent of PSP and CBD.


Subject(s)
Brain/pathology , Neurons/metabolism , Supranuclear Palsy, Progressive/metabolism , Tauopathies/pathology , Animals , Basal Ganglia Diseases/metabolism , Brain/metabolism , Drosophila , Mutation/genetics , Neuroglia/metabolism
10.
J Alzheimers Dis ; 72(1): 301-318, 2019.
Article in English | MEDLINE | ID: mdl-31561366

ABSTRACT

Most of the loci identified by genome-wide association studies (GWAS) for late-onset Alzheimer's disease (LOAD) are in strong linkage disequilibrium (LD) with nearby variants all of which could be the actual functional variants, often in non-protein-coding regions and implicating underlying gene regulatory mechanisms. We set out to characterize the causal variants, regulatory mechanisms, tissue contexts, and target genes underlying these associations. We applied our INFERNO algorithm to the top 19 non-APOE loci from the IGAP GWAS study. INFERNO annotated all LD-expanded variants at each locus with tissue-specific regulatory activity. Bayesian co-localization analysis of summary statistics and eQTL data was performed to identify tissue-specific target genes. INFERNO identified enhancer dysregulation in all 19 tag regions analyzed, significant enrichments of enhancer overlaps in the immune-related blood category, and co-localized eQTL signals overlapping enhancers from the matching tissue class in ten regions (ABCA7, BIN1, CASS4, CD2AP, CD33, CELF1, CLU, EPHA1, FERMT2, ZCWPW1). In several cases, we identified dysregulation of long noncoding RNA (lncRNA) transcripts and applied the lncRNA target identification algorithm from INFERNO to characterize their downstream biological effects. We also validated the allele-specific effects of several variants on enhancer function using luciferase expression assays. By integrating functional genomics with GWAS signals, our analysis yielded insights into the regulatory mechanisms, tissue contexts, genes, and biological processes affected by noncoding genetic variation associated with LOAD risk.


Subject(s)
Algorithms , Alzheimer Disease/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Genome-Wide Association Study/methods , Linkage Disequilibrium/genetics , Alzheimer Disease/epidemiology , Genetic Predisposition to Disease/epidemiology , Humans
11.
Neurol Genet ; 2(3): e79, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27231719

ABSTRACT

OBJECTIVE: To identify a causative variant(s) that may contribute to Alzheimer disease (AD) in African Americans (AA) in the ATP-binding cassette, subfamily A (ABC1), member 7 (ABCA7) gene, a known risk factor for late-onset AD. METHODS: Custom capture sequencing was performed on ∼150 kb encompassing ABCA7 in 40 AA cases and 37 AA controls carrying the AA risk allele (rs115550680). Association testing was performed for an ABCA7 deletion identified in large AA data sets (discovery n = 1,068; replication n = 1,749) and whole exome sequencing of Caribbean Hispanic (CH) AD families. RESULTS: A 44-base pair deletion (rs142076058) was identified in all 77 risk genotype carriers, which shows that the deletion is in high linkage disequilibrium with the risk allele. The deletion was assessed in a large data set (531 cases and 527 controls) and, after adjustments for age, sex, and APOE status, was significantly associated with disease (p = 0.0002, odds ratio [OR] = 2.13 [95% confidence interval (CI): 1.42-3.20]). An independent data set replicated the association (447 cases and 880 controls, p = 0.0117, OR = 1.65 [95% CI: 1.12-2.44]), and joint analysis increased the significance (p = 1.414 × 10(-5), OR = 1.81 [95% CI: 1.38-2.37]). The deletion is common in AA cases (15.2%) and AA controls (9.74%), but in only 0.12% of our non-Hispanic white cohort. Whole exome sequencing of multiplex, CH families identified the deletion cosegregating with disease in a large sibship. The deleted allele produces a stable, detectable RNA strand and is predicted to result in a frameshift mutation (p.Arg578Alafs) that could interfere with protein function. CONCLUSIONS: This common ABCA7 deletion could represent an ethnic-specific pathogenic alteration in AD.

12.
Nat Commun ; 6: 7247, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-26077951

ABSTRACT

Corticobasal degeneration (CBD) is a neurodegenerative disorder affecting movement and cognition, definitively diagnosed only at autopsy. Here, we conduct a genome-wide association study (GWAS) in CBD cases (n=152) and 3,311 controls, and 67 CBD cases and 439 controls in a replication stage. Associations with meta-analysis were 17q21 at MAPT (P=1.42 × 10(-12)), 8p12 at lnc-KIF13B-1, a long non-coding RNA (rs643472; P=3.41 × 10(-8)), and 2p22 at SOS1 (rs963731; P=1.76 × 10(-7)). Testing for association of CBD with top progressive supranuclear palsy (PSP) GWAS single-nucleotide polymorphisms (SNPs) identified associations at MOBP (3p22; rs1768208; P=2.07 × 10(-7)) and MAPT H1c (17q21; rs242557; P=7.91 × 10(-6)). We previously reported SNP/transcript level associations with rs8070723/MAPT, rs242557/MAPT, and rs1768208/MOBP and herein identified association with rs963731/SOS1. We identify new CBD susceptibility loci and show that CBD and PSP share a genetic risk factor other than MAPT at 3p22 MOBP (myelin-associated oligodendrocyte basic protein).


Subject(s)
Basal Ganglia Diseases/genetics , Kinesins/genetics , Myelin Proteins/genetics , Neurodegenerative Diseases/genetics , RNA, Long Noncoding/genetics , SOS1 Protein/genetics , Supranuclear Palsy, Progressive/genetics , tau Proteins/genetics , Adult , Aged , Aged, 80 and over , Case-Control Studies , Cerebral Cortex , Female , Genome-Wide Association Study , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Young Adult
13.
Acta Neuropathol Commun ; 3: 33, 2015 Jun 04.
Article in English | MEDLINE | ID: mdl-26041339

ABSTRACT

INTRODUCTION: Accumulation of insoluble conformationally altered hyperphosphorylated tau occurs as part of the pathogenic process in Alzheimer's disease (AD) and other tauopathies. In most AD subjects, wild-type (WT) tau aggregates and accumulates in neurofibrillary tangles and dystrophic neurites in the brain; however, in some familial tauopathy disorders, mutations in the gene encoding tau cause disease. RESULTS: We generated a mouse model, Tau4RTg2652, that expresses high levels of normal human tau in neurons resulting in the early stages of tau pathology. In this model, over expression of WT human tau drives pre-tangle pathology in young mice resulting in behavioral deficits. These changes occur at a relatively young age and recapitulate early pre-tangle stages of tau pathology associated with AD and mild cognitive impairment. Several features distinguish the Tau4RTg2652 model of tauopathy from previously described tau transgenic mice. Unlike other mouse models where behavioral and neuropathologic changes are induced by transgenic tau harboring MAPT mutations pathogenic for frontotemporal lobar degeneration (FTLD), the mice described here express the normal tau sequence. CONCLUSIONS: Features of Tau4RTg2652 mice distinguishing them from other established wild type tau overexpressing mice include very early phenotypic manifestations, non-progressive tau pathology, abundant pre-tangle and phosphorylated tau, sparse oligomeric tau species, undetectable fibrillar tau pathology, stability of tau transgene copy number/expression, and normal lifespan. These results suggest that Tau4RTg2652 animals may facilitate studies of tauopathy target engagement where WT tau is driving tauopathy phenotypes.


Subject(s)
Cognition Disorders/etiology , DNA Copy Number Variations/genetics , Neurofibrillary Tangles/pathology , Tauopathies/complications , tau Proteins/genetics , Age Factors , Analysis of Variance , Animals , Brain/metabolism , Brain/pathology , Disease Progression , Electroencephalography , Exploratory Behavior/physiology , Humans , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity/genetics , Muscle Strength/genetics , Neurofibrillary Tangles/genetics , Neurofibrillary Tangles/metabolism , Tauopathies/genetics
14.
JAMA Neurol ; 72(2): 209-16, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25531812

ABSTRACT

IMPORTANCE: Recently, a rare variant in the amyloid precursor protein gene (APP) was described in a population from Iceland. This variant, in which alanine is replaced by threonine at position 673 (A673T), appears to protect against late-onset Alzheimer disease (AD). We evaluated the frequency of this variant in AD cases and cognitively normal controls to determine whether this variant will significantly contribute to risk assessment in individuals in the United States. OBJECTIVE: To determine the frequency of the APP A673T variant in a large group of elderly cognitively normal controls and AD cases from the United States and in 2 case-control cohorts from Sweden. DESIGN, SETTING, AND PARTICIPANTS: Case-control association analysis of variant APP A673T in US and Swedish white individuals comparing AD cases with cognitively intact elderly controls. Participants were ascertained at multiple university-associated medical centers and clinics across the United States and Sweden by study-specific sampling methods. They were from case-control studies, community-based prospective cohort studies, and studies that ascertained multiplex families from multiple sources. MAIN OUTCOMES AND MEASURES: Genotypes for the APP A673T variant were determined using the Infinium HumanExome V1 Beadchip (Illumina, Inc) and by TaqMan genotyping (Life Technologies). RESULTS: The A673T variant genotypes were evaluated in 8943 US AD cases, 10 480 US cognitively normal controls, 862 Swedish AD cases, and 707 Swedish cognitively normal controls. We identified 3 US individuals heterozygous for A673T, including 1 AD case (age at onset, 89 years) and 2 controls (age at last examination, 82 and 77 years). The remaining US samples were homozygous for the alanine (A673) allele. In the Swedish samples, 3 controls were heterozygous for A673T and all AD cases were homozygous for the A673 allele. We also genotyped a US family previously reported to harbor the A673T variant and found a mother-daughter pair, both cognitively normal at ages 72 and 84 years, respectively, who were both heterozygous for A673T; however, all individuals with AD in the family were homozygous for A673. CONCLUSIONS AND RELEVANCE: The A673T variant is extremely rare in US cohorts and does not play a substantial role in risk for AD in this population. This variant may be primarily restricted to Icelandic and Scandinavian populations.


Subject(s)
Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Aged , Aged, 80 and over , Alzheimer Disease/epidemiology , Case-Control Studies , Female , Genotype , Humans , Male , Pedigree , Protective Factors , Sweden/epidemiology , United States/epidemiology
15.
Am J Hum Genet ; 94(5): 677-94, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24768552

ABSTRACT

Rare copy-number variation (CNV) is an important source of risk for autism spectrum disorders (ASDs). We analyzed 2,446 ASD-affected families and confirmed an excess of genic deletions and duplications in affected versus control groups (1.41-fold, p = 1.0 × 10(-5)) and an increase in affected subjects carrying exonic pathogenic CNVs overlapping known loci associated with dominant or X-linked ASD and intellectual disability (odds ratio = 12.62, p = 2.7 × 10(-15), ∼3% of ASD subjects). Pathogenic CNVs, often showing variable expressivity, included rare de novo and inherited events at 36 loci, implicating ASD-associated genes (CHD2, HDAC4, and GDI1) previously linked to other neurodevelopmental disorders, as well as other genes such as SETD5, MIR137, and HDAC9. Consistent with hypothesized gender-specific modulators, females with ASD were more likely to have highly penetrant CNVs (p = 0.017) and were also overrepresented among subjects with fragile X syndrome protein targets (p = 0.02). Genes affected by de novo CNVs and/or loss-of-function single-nucleotide variants converged on networks related to neuronal signaling and development, synapse function, and chromatin regulation.


Subject(s)
Child Development Disorders, Pervasive/genetics , DNA Copy Number Variations , Metabolic Networks and Pathways/genetics , Child , Female , Gene Regulatory Networks , Humans , Male , Multigene Family , Pedigree , Sequence Deletion
16.
Front Genet ; 5: 33, 2014.
Article in English | MEDLINE | ID: mdl-24600472

ABSTRACT

Autism spectrum disorders (ASD) are highly heritable complex neurodevelopmental disorders with a 4:1 male: female ratio. Common genetic variation could explain 40-60% of the variance in liability to autism. Because of their small effect, genome-wide association studies (GWASs) have only identified a small number of individual single-nucleotide polymorphisms (SNPs). To increase the power of GWASs in complex disorders, methods like convergent functional genomics (CFG) have emerged to extract true association signals from noise and to identify and prioritize genes from SNPs using a scoring strategy combining statistics and functional genomics. We adapted and applied this approach to analyze data from a GWAS performed on families with multiple children affected with autism from Autism Speaks Autism Genetic Resource Exchange (AGRE). We identified a set of 133 candidate markers that were localized in or close to genes with functional relevance in ASD from a discovery population (545 multiplex families); a gender specific genetic score (GS) based on these common variants explained 1% (P = 0.01 in males) and 5% (P = 8.7 × 10(-7) in females) of genetic variance in an independent sample of multiplex families. Overall, our work demonstrates that prioritization of GWAS data based on functional genomics identified common variants associated with autism and provided additional support for a common polygenic background in autism.

17.
JAMA Neurol ; 70(6): 742-5, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23588498

ABSTRACT

IMPORTANCE: High-prevalence foci of amyotrophic lateral sclerosis (ALS) and parkinsonism-dementia complex (PDC) exist in Japanese on the Kii Peninsula of Japan and in the Chamorros of Guam. Clinical and neuropathologic similarities suggest that the disease in these 2 populations may be related. Recent findings showed that some of the Kii Peninsula ALS cases had pathogenic C9orf72 repeat expansions, a genotype that causes ALS in Western populations. OBJECTIVES: To perform genotyping among Guam residents to determine if the C9orf72 expanded repeat allele contributes to ALS-PDC in this population and to evaluate LRRK2 for mutations in the same population. DESIGN AND SETTING: Case-control series from neurodegenerative disease research programs on Guam that screened residents for ALS, PDC, and dementia. PARTICIPANTS: Study participants included 24 with ALS and 22 with PDC and 43 older control subjects with normal cognition ascertained between 1956 and 2006. All but one participant were Chamorro, the indigenous people of Guam. A single individual of white race/ethnicity with ALS was ascertained on Guam during the study. MAIN OUTCOMES AND MEASURES: Participants were screened for C9orf72 hexanucleotide repeat length. Participants with repeat numbers in great excess of 30 were considered to have pathogenic repeat expansions. LRRK2 was screened for point mutations by DNA sequencing. RESULTS: We found a single individual with an expanded pathogenic hexanucleotide repeat. This individual of white race/ethnicity with ALS was living on Guam at the time of ascertainment but had been born in the United States. All Chamorro participants with ALS and PDC and control subjects had normal repeats, ranging from 2 to 17 copies. No pathogenic LRRK2 mutations were found. CONCLUSIONS AND RELEVANCE: Unlike participants with ALS from the Kii Peninsula, C9orf72 expansions do not cause ALS-PDC in Chamorros. Likewise, LRRK2 mutations do not cause Guam ALS-PDC.


Subject(s)
Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/genetics , DNA Repeat Expansion/genetics , Proteins/genetics , Adult , Amino Acid Sequence , Amyotrophic Lateral Sclerosis/epidemiology , C9orf72 Protein , Female , Gene Dosage , Guam/epidemiology , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Male , Middle Aged , Molecular Sequence Data , Protein Serine-Threonine Kinases/genetics
18.
Arch Neurol ; 69(10): 1270-9, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22869155

ABSTRACT

OBJECTIVE: To evaluate the association of risk and age at onset (AAO) of Alzheimer disease (AD) with single-nucleotide polymorphisms (SNPs) in the chromosome 19 region including apolipoprotein E (APOE) and a repeat-length polymorphism in TOMM40 (poly-T, rs10524523). DESIGN: Conditional logistic regression models and survival analysis. SETTING: Fifteen genome-wide association study data sets assembled by the Alzheimer's Disease Genetics Consortium. PARTICIPANTS: Eleven thousand eight hundred forty AD cases and 10 931 cognitively normal elderly controls. MAIN OUTCOME MEASURES: Association of AD risk and AAO with genotyped and imputed SNPs located in an 800-Mb region including APOE in the entire Alzheimer's Disease Genetics Consortium data set and with the TOMM40 poly-T marker genotyped in a subset of 1256 cases and 1605 controls. RESULTS: In models adjusting for APOE ε4, no SNPs in the entire region were significantly associated with AAO at P.001. Rs10524523 was not significantly associated with AD or AAO in models adjusting for APOE genotype or within the subset of ε3/ε3 subjects. CONCLUSIONS: APOE alleles ε2, ε3, and ε4 account for essentially all the inherited risk of AD associated with this region. Other variants including a poly-T track in TOMM40 are not independent risk or AAO loci.


Subject(s)
Alzheimer Disease/genetics , Apolipoproteins E/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics , Age of Onset , Aged , Aged, 80 and over , Alzheimer Disease/mortality , Chromosomes, Human, Pair 19/genetics , Cohort Studies , DNA Repeat Expansion/genetics , Female , Gene Frequency , Genetic Association Studies , Genotype , Humans , Logistic Models , Male , Membrane Transport Proteins/genetics , Mitochondrial Precursor Protein Import Complex Proteins , Survival Analysis
19.
Hum Mol Genet ; 21(15): 3500-12, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22556362

ABSTRACT

Rare mutations in the gene encoding for tau (MAPT, microtubule-associated protein tau) cause frontotemporal dementia-spectrum (FTD-s) disorders, including FTD, progressive supranuclear palsy (PSP) and corticobasal syndrome, and a common extended haplotype spanning across the MAPT locus is associated with increased risk of PSP and Parkinson's disease. We identified a rare tau variant (p.A152T) in a patient with a clinical diagnosis of PSP and assessed its frequency in multiple independent series of patients with neurodegenerative conditions and controls, in a total of 15 369 subjects. Tau p.A152T significantly increases the risk for both FTD-s (n = 2139, OR = 3.0, CI: 1.6-5.6, P = 0.0005) and Alzheimer's disease (AD) (n = 3345, OR = 2.3, CI: 1.3-4.2, P = 0.004) compared with 9047 controls. Functionally, p.A152T (i) decreases the binding of tau to microtubules and therefore promotes microtubule assembly less efficiently; and (ii) reduces the tendency to form abnormal fibers. However, there is a pronounced increase in the formation of tau oligomers. Importantly, these findings suggest that other regions of the tau protein may be crucial in regulating normal function, as the p.A152 residue is distal to the domains considered responsible for microtubule interactions or aggregation. These data provide both the first genetic evidence and functional studies supporting the role of MAPT p.A152T as a rare risk factor for both FTD-s and AD and the concept that rare variants can increase the risk for relatively common, complex neurodegenerative diseases, but since no clear significance threshold for rare genetic variation has been established, some caution is warranted until the findings are further replicated.


Subject(s)
Alzheimer Disease/genetics , Frontotemporal Dementia/genetics , Genetic Variation , tau Proteins/genetics , Aged , Alzheimer Disease/epidemiology , Frontotemporal Dementia/epidemiology , Genetic Predisposition to Disease , Genotype , Haplotypes , Humans , Middle Aged , Risk
20.
Mol Autism ; 2(1): 17, 2011 Oct 21.
Article in English | MEDLINE | ID: mdl-22017886

ABSTRACT

BACKGROUND: The inheritance pattern in most cases of autism is complex. The risk of autism is increased in siblings of children with autism and previous studies have indicated that the level of risk can be further identified by the accumulation of multiple susceptibility single nucleotide polymorphisms (SNPs) allowing for the identification of a higher-risk subgroup among siblings. As a result of the sex difference in the prevalence of autism, we explored the potential for identifying sex-specific autism susceptibility SNPs in siblings of children with autism and the ability to develop a sex-specific risk assessment genetic scoring system. METHODS: SNPs were chosen from genes known to be associated with autism. These markers were evaluated using an exploratory sample of 480 families from the Autism Genetic Resource Exchange (AGRE) repository. A reproducibility index (RI) was proposed and calculated in all children with autism and in males and females separately. Differing genetic scoring models were then constructed to develop a sex-specific genetic score model designed to identify individuals with a higher risk of autism. The ability of the genetic scores to identify high-risk children was then evaluated and replicated in an independent sample of 351 affected and 90 unaffected siblings from families with at least 1 child with autism. RESULTS: We identified three risk SNPs that had a high RI in males, two SNPs with a high RI in females, and three SNPs with a high RI in both sexes. Using these results, genetic scoring models for males and females were developed which demonstrated a significant association with autism (P = 2.2 × 10-6 and 1.9 × 10-5, respectively). CONCLUSIONS: Our results demonstrate that individual susceptibility associated SNPs for autism may have important differential sex effects. We also show that a sex-specific risk score based on the presence of multiple susceptibility associated SNPs allow for the identification of subgroups of siblings of children with autism who have a significantly higher risk of autism.

SELECTION OF CITATIONS
SEARCH DETAIL
...