Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 113: 413-421, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32593107

ABSTRACT

Sewage sludges are problematic due to the constant increase of urban population. The high level of organic matter in sludges can be valorized by co-composting with green waste. Many chemical changes occur in the compost maturation process, resulting on stabilized organic matter by humification which is recoverable as soil amendment. In this way, the knowledge of organic matter stability and maturity of compost is essential. However, estimation of chemical parameters allowing the management of compost quality usually need complex time consuming laboratory measurements. Indeed, there is not yet rapid, simple and robust method for their on site assessment at the moment. Among usual parameters used to monitor compost evolution, the C/N ratio is a fundamental chemical parameter. The aim of this work is the estimation of the C/N ratio using a Partial Least Squares regression based on UV and fluorescence spectroscopic data and pH from compost water extracts at various steps of composting process and measured on site. A mathematical linear model is established based on selected data (pH, spectroscopic indices) resulting on average relative error for C/N estimation of 5.26% (range between 0.5% min. and 9.5% max.). This tool leads to a rapid and simple on site estimation of the compost stabilization, allowing qualification of the end-product resulting on a global spectroscopic index of stability.


Subject(s)
Composting , Sewage , Soil , Spectrometry, Fluorescence , Water
2.
Bioresour Technol ; 101(1): 51-7, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19733478

ABSTRACT

A vertical-flow wetland system was tested for treatment of liquid sludge with high organic concentrations using an organic substrate (peat/crushed pine bark, 1/1) as growing medium. Mesocosms (1 m(3)) were planted with either Phragmites australis Cav., Typha latifolia L., or Iris pseudacorus L. The aim of the work was to determine the feasibility of using an organic substrate in treatment wetlands, through the study of its temporal patterns and of its impact on the water output quality. Results confirmed that the organic substrate can be used in such wetlands treating highly organic sludge, without clogging phenomena for the experimental period. The organic substrate released soluble organic matter but few mineral elements. Over the experimental period, substrate TOC concentration did not change while N concentration increased. Plants showed positive impact on substrate temporal patterns and also on the outflow water quality. Overall, Phragmites seemed to be more beneficial than Typha and Iris.


Subject(s)
Industrial Waste/prevention & control , Plants/metabolism , Sewage , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/pharmacokinetics , Water Purification/methods , Wetlands , Feasibility Studies , Plants/classification , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...