Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21252450

ABSTRACT

New SARS-CoV-2 mutations are constantly emerging, raising concerns of increased transmissibility, virulence or escape from host immune response. We describe a nested RT-PCR assay ([~]1500 bps) to detect multiple key spike protein mutations distinctive of the major known circulating SARS-CoV-2 variants, including the three Variants of Concern (VOCs) 20I/501Y.V1 (United Kingdom), 20H/501Y.V2 (South Africa), and 20J/501Y.V3 (Brazil), as well as the 20E.EU1 variant (Spain), the CAL.20C recently identified in California, and the mink-associated variant (GR, lineage B.1.1.298). Prior to application to field samples, the discriminatory potential of this PCR assay was explored using GISAID and Nextclade. To extend variant detection to challenging matrices such as sewage, where the amplification of long fragments is problematic, two short nested RT-PCR assays ([~]300 bps) were also designed, targeting portions of the region spanned by the long nested assay. The three newly-designed assays were then tested on field samples, including 7 fully-sequenced viral isolates from swab samples and 34 urban wastewater samples, some of which collected in areas where circulation of VOCs had been reported. The long assay successfully amplified all the previously characterized viral isolates, allowing the correct identification of variants 20I/501Y.V1 and 20E.EU1 present in the panel. The sequences obtained using the short assays were consistent with those obtained with the long assay. Mutations characteristic of VOCs (UK and Brazilian variant) and of other variant (Spanish) were detected in sewage samples. To our knowledge, this is the first evidence of the presence of sequences harboring key mutations of 20I/501Y.V1 and 20J/501Y.V3 in urban wastewaters, highlighting the potential contribution of wastewater surveillance to explore SARS-CoV-2 diversity. The developed nested RT-PCR assays can be used as an initial rapid screening test to select clinical samples containing mutations of interest. This can speed up diagnosis and optimize resources since it allows full genome sequencing to be done only on clinically relevant specimens. The assays can be also employed for a rapid and cost-effective detection of VOCs or other variants in sewage for the purposes of wastewater-based epidemiology. The approach proposed here can be used to better understand SARS-CoV-2 variant diversity, geographic distribution and impact worldwide.

2.
Article in English | WPRIM (Western Pacific) | ID: wpr-758883

ABSTRACT

Anthrax, caused by Bacillus anthracis, is a non-contagious infectious disease that affects a wide range of animal species (primarily ruminants) including humans. Due to the often-fatal outcome in humans, quick administration of definitely effective antimicrobials is crucial either as prophylaxis or as a clinical case therapy. In this study, 110 B. anthracis strains, temporally, geographically, and genetically different, isolated during anthrax outbreaks in Italy from 1984 to 2017, were screened using a broth microdilution method to determine their susceptibility to 16 clinically relevant antimicrobial agents. The strains were isolated from various matrices (human, animal, and environmental samples) and were representative of thirty distinct genotypes previously identified by 15-loci multiple-locus variable-number of tandem repeats analysis. The antimicrobials tested were gentamicin, ceftriaxone, streptomycin, penicillin G, clindamycin, chloramphenicol, vancomycin, linezolid, cefotaxime, tetracycline, erythromycin, rifampin, amoxicillin, ciprofloxacin, doxycycline, and trimethoprim. All isolates were susceptible to most of the tested antimicrobials, with the exception of trimethoprim for which all of them showed high minimal inhibitory concentration values. An intermediate level of susceptibility was recorded for ceftriaxone and cefotaxime. Although the Centers for Disease Control and Prevention recommend the use of doxycycline, ciprofloxacin, penicillin G, and amoxicillin for treatment of human cases and for post-exposure prophylaxis to anthrax spores, this study shows a high degree of in vitro susceptibility of B. anthracis to many other antimicrobials, suggesting the possibility of an alternative choice for prophylaxis and therapy.


Subject(s)
Animals , Humans , Amoxicillin , Anthrax , Anti-Infective Agents , Bacillus anthracis , Bacillus , Cefotaxime , Ceftriaxone , Chloramphenicol , Ciprofloxacin , Clindamycin , Communicable Diseases , Disease Outbreaks , Doxycycline , Erythromycin , Genotype , Gentamicins , In Vitro Techniques , Italy , Linezolid , Methods , Microbial Sensitivity Tests , Penicillin G , Post-Exposure Prophylaxis , Rifampin , Spores , Streptomycin , Tandem Repeat Sequences , Tetracycline , Trimethoprim , Vancomycin
SELECTION OF CITATIONS
SEARCH DETAIL
...