Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Photosynth Res ; 144(3): 327-339, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32291595

ABSTRACT

The initial stimulation of photosynthesis under elevated CO2 concentrations (eCO2) is often followed by a decline in photosynthesis, known as CO2 acclimation. Changes in N levels under eCO2 can have different effects in plants fertilized with nitrate (NO3-) or ammonium (NH4+) as the N source. NO3- assimilation consumes approximately 25% of the energy produced by an expanded leaf, whereas NH4+ requires less energy to be incorporated into organic compounds. Although plant-N interactions are important for the productivity and nutritional value of food crops worldwide, most studies have not compared the performance of plants supplied with different forms of N. Therefore, this study aims to go beyond treating N as the total N in the soil or the plant because the specific N compounds formed from the available N forms become highly engaged in all aspects of plant metabolism. To this end, plant N metabolism was analyzed through an experiment with eCO2 and fertigation with NO3- and/or NH4+ as N sources for tobacco (Nicotiana tabacum) plants. The results showed that the plants that received only NO3- as a source of N grew more slowly when exposed to a CO2 concentration of 760 µmol mol-1 than when they were exposed to ambient CO2 conditions. On the other hand, in plants fertigated with only NH4+, eCO2 enhanced photosynthesis. This was essential for the maintenance of the metabolic pathways responsible for N assimilation and distribution in growing tissues. These data show that the physiological performance of tobacco plants exposed to eCO2 depends on the form of inorganic N that is absorbed and assimilated.


Subject(s)
Carbon Dioxide/metabolism , Nicotiana/physiology , Nitrogen/metabolism , Photosynthesis , Ammonium Compounds/metabolism , Nitrates/metabolism , Soil/chemistry , Nicotiana/growth & development
2.
J Plant Physiol ; 239: 71-82, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31212099

ABSTRACT

Cryopreservation is a process whereby biological structures are preserved in liquid nitrogen (-196 °C) without losing their viability. Many cryopreservation techniques use the Plant Vitrification Solution 2 (PVS2) for cryoprotection. This study will therefore evaluate the influence of different exposure times to the cryoprotectant PVS2 and discuss the importance of the mobilization of reserves and the antioxidant metabolism during the germination of cryopreserved Passiflora ligularis embryos. The composition of P. ligularis seeds was analytically determined. We tested the germination capacity and the Germination Speed Index (GSI) of embryos (that is, seeds without external tegument) which were exposed to different PVS2 exposure times (0, 30, 60 and 120 min) at 30 days after thawing. Proline content, hydrogen peroxide, activity of isocitrate lyase (ICL), malate synthase (MSy), lipid peroxidation and antioxidant enzyme activities (SOD, CAT, APX) were measured at 7, 14 and 21 days after cryopreservation. The germination from cryopreserved embryos was maximal (85%) after 60 min PVS2 exposure with a GSI of 0.6. At 60 min, the highest activity of the enzymes involved in the glyoxylate cycle, ICL and MSy were recorded. We hypothesize that a 60 min exposure to PVS2 accelerates the reserve mobilization which correlates positively with germination. Until 60 min, there was a positive correlation between the PVS2 exposure time and the proline content, as well as the activity of antioxidant enzymes (SOD, CAT, APX), and a negative correlation with the lipid peroxidation. This study enables us to optimize the long-term conservation of this species. In conclusion, fundamental research is necessary to optimize the cryopreservation procedure, and this study offers an effective and efficient workflow which can be extrapolated to other (oil-rich) species.


Subject(s)
Antioxidants/metabolism , Cryoprotective Agents/metabolism , Germination/drug effects , Lipid Metabolism/drug effects , Passiflora/physiology , Seeds/drug effects , Cryopreservation , Seeds/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...