Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
Arch Virol ; 169(7): 143, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864946

ABSTRACT

Potyvirus genomes are expressed as polyproteins that are autocatalytically cleaved to produce 10 to 12 multifunctional proteins, among which P1 is the most variable. It has long been hypothesized that P1 plays role(s) in host adaptation and host specificity. We tested this hypothesis using two phylogenetically distinct potyviruses: soybean mosaic virus (SMV), with a narrow host range, and clover yellow vein virus (ClYVV), with a broader host range. When the full-length P1 cistron of SMV-N was replaced with P1 from ClYVV-No.30, the chimera systemically infected only SMV-N-permissive hosts. Hence, there were no changes in the host range or host specificity of the chimeric viruses. Despite sharing only 20.3% amino acid sequence identity, predicted molecular models of P1 proteins from SMV-N and ClYVV-No.30 showed analogous topologies. These observations suggest that P1 of ClYVV-No.30 can functionally replace P1 of SMV-N. However, the P1 proteins of these two potyviruses are not determinants of host specificity and host range.


Subject(s)
Host Specificity , Plant Diseases , Potyvirus , Viral Proteins , Potyvirus/genetics , Potyvirus/physiology , Plant Diseases/virology , Viral Proteins/genetics , Viral Proteins/metabolism , Glycine max/virology , Nicotiana/virology , Phylogeny
2.
Plant J ; 113(5): 915-933, 2023 03.
Article in English | MEDLINE | ID: mdl-36424366

ABSTRACT

The soybean Rpp1 locus confers resistance to Phakopsora pachyrhizi, causal agent of rust, and resistance is usually dominant over susceptibility. However, dominance of Rpp1-mediated resistance is lost when a resistant genotype (Rpp1 or Rpp1b) is crossed with susceptible line TMG06_0011, and the mechanism of this dominant susceptibility (DS) is unknown. Sequencing the Rpp1 region reveals that the TMG06_0011 Rpp1 locus has a single nucleotide-binding site leucine-rich repeat (NBS-LRR) gene (DS-R), whereas resistant PI 594760B (Rpp1b) is similar to PI 200492 (Rpp1) and has three NBS-LRR resistance gene candidates. Evidence that DS-R is the cause of DS was reflected in virus-induced gene silencing of DS-R in Rpp1b/DS-R or Rpp1/DS-R heterozygous plants with resistance partially restored. In heterozygous Rpp1b/DS-R plants, expression of Rpp1b candidate genes was not significantly altered, indicating no effect of DS-R on transcription. Physical interaction of the DS-R protein with candidate Rpp1b resistance proteins was supported by yeast two-hybrid studies and in silico modeling. Thus, we conclude that suppression of resistance most likely does not occur at the transcript level, but instead probably at the protein level, possibly with Rpp1 function inhibited by binding to the DS-R protein. The DS-R gene was found in other soybean lines, with an estimated allele frequency of 6% in a diverse population, and also found in wild soybean (Glycine soja). The identification of a dominant susceptible NBS-LRR gene provides insight into the behavior of NBS-LRR proteins and serves as a reminder to breeders that the dominance of an R gene can be influenced by a susceptibility allele.


Subject(s)
Phakopsora pachyrhizi , Phakopsora pachyrhizi/genetics , Glycine max/genetics , Leucine-Rich Repeat Proteins , Genes, Plant/genetics , Binding Sites , Plant Diseases/genetics
3.
Mol Biochem Parasitol ; 250: 111489, 2022 07.
Article in English | MEDLINE | ID: mdl-35640846

ABSTRACT

Despite their economic significance in agricultural cropping systems, a lack of suitable molecular tools for manipulating gene expression has hindered progress in the functional genomics of plant parasitic nematodes (PPN). Obligate sexual reproduction and the obligate nature of PPN-host interactions further complicate the development of in vivo gene delivery and expression systems in these pests. Methods such as microinjection and microprojectile bombardment have been developed for introducing gene constructs into the free-living nematode, Caenorhabditis elegans. However, these procedures can be laborious and inefficient. Electroporation has been used extensively to introduce macromolecules, including single-stranded RNAs, into eukaryotic and prokaryotic cells. The technique has also been used for the delivery of DNA and double-stranded RNA constructs into nematodes by whole-animal electroporation. Here, we describe methods for the expression of a nematode-optimized NanoLuc luciferase mRNA in the form of in vitro transcripts following whole-animal electroporation of Heterodera glycines, Meloidogyne incognita, and C. elegans. The ability to transiently express single-stranded RNA constructs in economically important PPN provides a rapid means to evaluate nematode and/or foreign genes for their biological significance and potential role in nematode management.


Subject(s)
Parasites , Tylenchoidea , Animals , Caenorhabditis elegans/genetics , Electroporation , Luciferases/genetics , Luciferases/metabolism , Parasites/genetics , Plants/genetics , RNA/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tylenchoidea/genetics , Tylenchoidea/metabolism
4.
Pathogens ; 10(2)2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33670683

ABSTRACT

A novel member of the Carlavirus genus, provisionally named soybean carlavirus 1 (SCV1), was discovered by RNA-seq analysis of randomly collected soybean leaves in Illinois, USA. The SCV1 genome contains six open reading frames that encode a viral replicase, triple gene block proteins, a coat protein (CP) and a nucleic acid binding protein. The proteins showed highest amino acid sequence identities with the corresponding proteins of red clover carlavirus A (RCCVA). The predicted amino acid sequence of the SCV1 replicase was only 60.6% identical with the replicase of RCCVA, which is below the demarcation criteria for a new species in the family Betaflexiviridae. The predicted replicase and CP amino acid sequences of four SCV1 isolates grouped phylogenetically with those of members of the Carlavirus genus in the family Betaflexiviridae. The features of the encoded proteins, low nucleotide and amino acid sequence identities of the replicase with the closest member, and the phylogenetic grouping suggest SCV1 is a new member of the Carlavirus genus.

5.
Plant Dis ; 105(10): 2785-2791, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33560883

ABSTRACT

Viruses and viroids prevalent in a population of 42 wild grapevines (i.e., free-living, uncultivated grapevines; Vitis spp.) were compared with those in a population of 85 cultivated grapevines collected in Tennessee, United States by RNA sequencing analysis of pools of ribosomal RNA-depleted total RNA. The sequences of 10 viruses (grapevine fleck virus, grapevine leafroll-associated virus 2, grapevine rupestris stem pitting-associated virus, grapevine Syrah virus 1, grapevine vein-clearing virus, grapevine virus B, grapevine virus E, tobacco ringspot virus, tomato ringspot virus, and a novel nano-like virus) and two viroids (hop stunt viroid and grapevine yellow speckle viroid 1) were detected in both grapevine populations. Sequences of four viruses (grapevine associated tymo-like virus, grapevine leafroll-associated virus 3, grapevine red blotch virus, and grapevine virus H) were identified only from cultivated grapevines. High, moderate, and low numbers of sequence reads were identified only from wild grapevines for a novel caulimovirus, an enamovirus, and alfalfa mosaic virus, respectively. The presence of most virus sequences and both viroids was verified independently in the original samples by reverse-transcription PCR followed by Sanger sequencing. Comparison of viral sequences shared by both populations showed that cultivated and wild grapevines harbored distinct sequence variants, which suggests that there was limited virus movement between the two populations. Collectively, this study represents the first unbiased survey of viruses and viroids in both cultivated and wild grapevines within a defined geographic region.


Subject(s)
Plant Diseases/virology , Viroids , Vitis , RNA, Viral/genetics , Tennessee , Viroids/genetics , Viroids/pathogenicity , Vitis/virology
6.
Viruses ; 12(12)2020 12 01.
Article in English | MEDLINE | ID: mdl-33271916

ABSTRACT

Soybean thrips (Neohydatothrips variabilis) are one of the most efficient vectors of soybean vein necrosis virus, which can cause severe necrotic symptoms in sensitive soybean plants. To determine which other viruses are associated with soybean thrips, the metatranscriptome of soybean thrips, collected by the Midwest Suction Trap Network during 2018, was analyzed. Contigs assembled from the data revealed a remarkable diversity of virus-like sequences. Of the 181 virus-like sequences identified, 155 were novel and associated primarily with taxa of arthropod-infecting viruses, but sequences similar to plant and fungus-infecting viruses were also identified. The novel viruses were predicted to have positive-sense RNA, negative-stranded RNA, double-stranded RNA, and single-stranded DNA genomes. The assembled sequences included 100 contigs that represented at least 95% coverage of a virus genome or genome segment. Sequences represented 12 previously described arthropod viruses including eight viruses reported from Hubei Province in China, and 12 plant virus sequences of which six have been previously described. The presence of diverse populations of plant viruses within soybean thrips suggests they feed on and acquire viruses from multiple host plant species that could be transmitted to soybean. Assessment of the virome of soybean thrips provides, for the first time, information on the diversity of viruses present in thrips.


Subject(s)
Disease Susceptibility , Glycine max/microbiology , Host-Parasite Interactions , Host-Pathogen Interactions , Plant Diseases/genetics , Plant Diseases/microbiology , Animals , Arthropods , Computational Biology/methods , Disease Vectors , Genome, Viral , Host-Parasite Interactions/genetics , Host-Pathogen Interactions/genetics , Phylogeny , Plant Diseases/parasitology , Plant Diseases/virology , RNA Viruses/genetics , Glycine max/parasitology , Glycine max/virology
7.
J Gen Virol ; 101(1): 105-111, 2020 01.
Article in English | MEDLINE | ID: mdl-31769392

ABSTRACT

A novel picorna-like virus, provisionally named Aphis glycines virus 1 (ApGlV1) was discovered by high-throughput sequencing of soybean total RNAs and detected in suction trap-collected Aphis glycines. The ApGlV1 genome contains two large ORFs organized similar to those of dicipiviruses in the Picornaviridae where ORFs 1 and 2 encode structural and nonstructural proteins, respectively. Both ORFs are preceded by internal ribosome entry site (IRES) elements. The 5' IRES was more active in dual luciferase activity assays than the IRES in the intergenic region. The ApGlV1 genome was predicted to encode a serine protease instead of a cysteine protease and showed very low aa sequence identities to recognized members of the Picornavirales. In phylogenetic analyses based on capsid protein and RNA-dependent RNA polymerase sequences, ApGlV1 consistently clustered with a group of unclassified bicistronic picorna-like viruses discovered from arthropods and plants that may represent a novel family in the order Picornavirales.


Subject(s)
Internal Ribosome Entry Sites/genetics , Picornaviridae/genetics , Viruses, Unclassified/genetics , Genome, Viral/genetics , Open Reading Frames/genetics , RNA Viruses/genetics , RNA, Viral/genetics , Viral Proteins/genetics
8.
Theor Appl Genet ; 132(12): 3413-3424, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31630210

ABSTRACT

KEY MESSAGE: Genome-wide association analyses identified candidates for genes involved in restricting virus movement into embryonic tissues, suppressing virus-induced seed coat mottling and preserving yield in soybean plants infected with soybean mosaic virus. Soybean mosaic virus (SMV) causes significant reductions in soybean yield and seed quality. Because seedborne infections can serve as primary sources of inoculum for SMV infections, resistance to SMV seed transmission provides a means to limit the impacts of SMV. In this study, two diverse population panels, Pop1 and Pop2, composed of 409 and 199 soybean plant introductions, respectively, were evaluated for SMV seed transmission rate, seed coat mottling, and seed yield from SMV-infected plants. The phenotypic data and genotypic data from the SoySNP50K dataset were analyzed using GAPIT and rrBLUP. For SMV seed transmission rate, a single locus was identified on chromosome 9 in Pop1. For SMV-induced seed coat mottling, loci were identified on chromosome 9 in Pop1 and on chromosome 3 in Pop2. For seed yield from SMV-infected plants, a single locus was identified on chromosome 3 in Pop2 that was within the map interval of a previously described quantitative trait locus for seed number. The high linkage disequilibrium regions surrounding the markers on chromosomes 3 and 9 contained a predicted nonsense-mediated RNA decay gene, multiple pectin methylesterase inhibitor genes (involved in restricting virus movement), two chalcone synthase genes, and a homolog of the yeast Rtf1 gene (involved in RNA-mediated transcriptional gene silencing). The results of this study provided additional insight into the genetic architecture of these three important traits, suggested candidate genes for downstream functional validation, and suggested that genomic prediction would outperform marker-assisted selection for two of the four trait-marker associations.


Subject(s)
Glycine max/genetics , Plant Diseases/genetics , Plant Diseases/virology , Potyvirus/pathogenicity , Genetic Association Studies , Genotype , Linkage Disequilibrium , Phenotype , Quantitative Trait Loci , Seeds/virology , Glycine max/virology
9.
Plant Pathol J ; 35(5): 538-542, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31632228

ABSTRACT

In 2017, two new tomato mosaic virus (ToMV) isolates were collected from greenhouses in Buyeo, Chungcheongnam-do, South Korea. Full-length cDNAs of the new ToMV isolates were cloned into dual cauliflower mosaic virus 35S and T7 promoter-driven vectors, sequenced and their pathogenicities investigated. The nucleotide sequences of isolates GW1 (MH507165) and GW2 (MH507166) were 99% identical, resulting in only two amino acid differences in nonconserved region II and the helicase domain, Ile668Thr and Val834Ile. The two isolates were most closely related to a ToMV isolate from Taiwan (KJ207374). Isolate GW1 (Ile668, Val834) induced a systemic hypersensitive response in Nicotiana benthamiana compared with the isolate GW2, which a single residue substitution showed was due to Val834.

10.
Plant Pathol J ; 35(4): 381-387, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31481861

ABSTRACT

For several years, temperatures in the Korean peninsula have gradually increased due to climate change, resulting in a changing environment for growth of crops and vegetables. An associated consequence is that emerging species of insect vector have caused increased viral transmission. In Jeju Island, Korea, occurrences of viral disease have increased. Here, we report characterization of five newly collected turnip mosaic virus (TuMV) isolates named KBJ1, KBJ2, KBJ3, KBJ4 and KBJ5 from a survey on Jeju Island in 2017. Full-length cDNAs of each isolate were cloned into the pJY vector downstream of cauliflower mosaic virus 35S and bacteriophage T7 RNA polymerase promoters. Their fulllength sequences share 98.9-99.9% nucleotide sequence identity and were most closely related to previously reported Korean TuMV isolates. All isolates belonged to the BR group and infected both Chinese cabbage and radish. Four isolates induced very mild symptoms in Nicotiana benthamiana but KBJ5 induced a hypersensitive response. Symptom differences may result from three amino acid differences uniquely present in KBJ5; Gly(382)Asp, Ile(891)Val, and Lys(2522)Glu in P1, P3, and NIb, respectively.

11.
Phytopathology ; 109(9): 1638-1647, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31044662

ABSTRACT

Infectious clones of Korean turnip mosaic virus (TuMV) isolates KIH1 and HJY1 share 88.1% genomic nucleotides and 96.4% polyprotein amino acid identity, and they induce systemic necrosis or mild mosaic, respectively, in Nicotiana benthamiana. Chimeric constructs between these isolates exchanged the 5', central, and 3' domains of KIH1 (K) and HJY1 (H), where the order of the letters indicates the origin of these domains. KIH1 and chimeras KHH and KKH induced systemic necrosis, whereas HJY1 and chimeras HHK, HKK, and HKH induced mild symptoms, indicating the determinant of necrosis to be within the 5' 3.9 kb of KIH1; amino acid identities of the included P1, Helper component protease, P3, 6K1, and cylindrical inclusion N-terminal domain were 90.06, 98.91, 93.80, 100, and 100%, respectively. Expression of P1 or P3 from a potato virus X vector yielded symptom differences only between P3 of KIH1 and HJY1, implicating a role for P3 in necrosis in N. benthamiana. Chimera KKH infected Brassica rapa var. pekinensis 'Norang', which was resistant to both KIH1 and HJY1, indicating that two separate TuMV determinants are required to overcome the resistance. Ability of diverse TuMV isolates, chimeras, and recombinants to overcome resistance in breeding lines may allow identification of novel resistance genes.


Subject(s)
Brassica , Nicotiana , Brassica/virology , Chimera , Plant Diseases/microbiology , Potyvirus , Nicotiana/virology
14.
Arch Virol ; 164(6): 1553-1565, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30923966

ABSTRACT

Two isolates of Youcai mosaic virus (YoMV) were obtained, and their full-length genomic sequences were determined. Full-length infectious cDNA clones of each isolate were generated in which the viral sequence was under the control of dual T7 and 35S promoters for both in vitro transcript production and agro-infiltration. Comparison of the predicted amino acid sequences of the encoded proteins revealed only four differences between the isolates: three in the RNA-dependent RNA polymerase (RdRp) (V383I and M492I in the 125-kDa protein and T1245M in the 182-kDa protein); and one in the overlapping region of the movement protein (MP) and coat protein (CP) genes, affecting only the N-terminal domain of CP (CP M17T). One of the isolates caused severe symptoms in Nicotiana benthamiana plants, while the other caused only mild symptoms. In order to identify the amino acid residues associated with symptom severity, chimeric constructs were generated by combining parts of the two infectious YoMV clones, and the symptoms in infected plants were compared to those induced by the parental isolates. This allowed us to conclude that the M17T substitution in the N-terminal domain of CP was responsible for the difference in symptom severity. The M17T variation was found to be unique among characterized YoMV isolates. A difference in potential post-translational modification resulting from the presence of a predicted casein kinase II phosphorylation site only in the CP of isolate HK2 may be responsible for the symptom differences.


Subject(s)
Nicotiana/virology , Polymorphism, Single Nucleotide , Tobamovirus/pathogenicity , Virulence Factors/genetics , Capsid Proteins/genetics , Capsid Proteins/metabolism , Plant Diseases , Protein Processing, Post-Translational , Reading Frames , Sequence Analysis, Protein , Tobamovirus/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Virulence Factors/metabolism
15.
Hortic Res ; 6: 9, 2019.
Article in English | MEDLINE | ID: mdl-30622722

ABSTRACT

A genome-wide association study (GWAS) was applied to detect single nucleotide polymorphisms (SNPs) significantly associated with resistance to Heterodera glycines (HG) also known as the soybean cyst nematode (SCN) in the core collection of common bean, Phaseolus vulgaris. There were 84,416 SNPs identified in 363 common bean accessions. GWAS identified SNPs on chromosome (Chr) 1 that were significantly associated with resistance to HG type 2.5.7. These SNPs were in linkage disequilibrium with a gene cluster orthologous to the three genes at the Rhg1 locus in soybean. A novel signal on Chr 7 was detected and associated with resistance to HG type 1.2.3.5.6.7. Genomic predictions (GPs) for resistance to these two SCN HG types in common bean achieved prediction accuracy of 0.52 and 0.41, respectively. Our study generated a high-quality SNP panel for 363 common bean accessions and demonstrated that both GWAS and GP were effective strategies to understand the genetic architecture of SCN resistance in common bean.

16.
Arch Virol ; 164(4): 1233-1244, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30663023

ABSTRACT

In October 2018, the order Mononegavirales was amended by the establishment of three new families and three new genera, abolishment of two genera, and creation of 28 novel species. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).


Subject(s)
Mononegavirales/classification , Mononegavirales/genetics , Mononegavirales/isolation & purification , Phylogeny , Virology/organization & administration
17.
J Nematol ; 512019.
Article in English | MEDLINE | ID: mdl-34179812

ABSTRACT

Heterodera glycines, the soybean cyst nematode (SCN), is a plant-parasitic nematode capable of manipulating host plant biochemistry and development. Many studies have suggested that the nematode has acquired genes from bacteria via horizontal gene transfer events (HGTs) that have the potential to enhance nematode parasitism. A recent allelic imbalance analysis identified two candidate virulence genes, which also appear to have entered the SCN genome through HGTs. One of the candidate genes, H. glycines biotin synthase (HgBioB), contained sequence polymorphisms between avirulent and virulent inbred SCN strains. To test the function of these HgBioB alleles, a complementation experiment using biotin synthase-deficient Escherichia coli was conducted. Here, we report that avirulent nematodes produce an active biotin synthase while virulent ones contain an inactive form of the enzyme. Moreover, sequencing analysis of HgBioB genes from SCN field populations indicates the presence of diverse mixture of HgBioB alleles with the virulent form being the most prevalent. We hypothesize that the mutations in the inactive HgBioB allele within the virulent SCN could result in a change in protein function that in some unknown way bolster its parasitic lifestyle.

18.
J Gen Virol ; 99(10): 1418-1424, 2018 10.
Article in English | MEDLINE | ID: mdl-30156527

ABSTRACT

Analysis of transcriptome sequence data from eggs and second-stage juveniles (J2s) of sugar beet cyst nematode (SBCN, Heterodera schachtii) identified the full-length genome of a positive-sense single-stranded RNA virus, provisionally named sugar beet cyst nematode virus 1 (SBCNV1). The SBCNV1 sequence was detected in both eggs and J2s, indicating its possible vertical transmission. The 9503-nucleotide genome sequence contains a single long open reading frame, which was predicted to encode a polyprotein with conserved domains for picornaviral structural proteins proximal to its amino terminus and RNA helicase, cysteine proteinase and RNA-dependent RNA polymerase (RdRp) conserved domains proximal to its carboxyl terminus, hallmarks of viruses belonging to the order Picornavirales. Phylogenetic analysis of the predicted SBCNV1 RdRp amino acid sequence indicated that the SBCNV1 sequence is most closely related to members of the family Secoviridae, which includes genera of nematode-transmitted plant-infecting viruses. SBCNV1 represents the first fully sequenced viral genome from SBCN.


Subject(s)
Beta vulgaris/parasitology , Picornaviridae/classification , Picornaviridae/isolation & purification , Transcriptome , Tylenchoidea/virology , Animals , Genome, Viral , Molecular Sequence Annotation , Open Reading Frames , Phylogeny , Picornaviridae/genetics , RNA-Dependent RNA Polymerase/genetics , Sequence Analysis, DNA , Sequence Analysis, RNA , Sequence Homology, Amino Acid , Tylenchoidea/genetics , Tylenchoidea/growth & development , Viral Proteins/genetics
19.
Plant J ; 95(1): 71-85, 2018 07.
Article in English | MEDLINE | ID: mdl-29671916

ABSTRACT

Glycine latifolia (Benth.) Newell & Hymowitz (2n = 40), one of the 27 wild perennial relatives of soybean, possesses genetic diversity and agronomically favorable traits that are lacking in soybean. Here, we report the 939-Mb draft genome assembly of G. latifolia (PI 559298) using exclusively linked-reads sequenced from a single Chromium library. We organized scaffolds into 20 chromosome-scale pseudomolecules utilizing two genetic maps and the Glycine max (L.) Merr. genome sequence. High copy numbers of putative 91-bp centromere-specific tandem repeats were observed in consecutive blocks within predicted pericentromeric regions on several pseudomolecules. No 92-bp putative centromeric repeats, which are abundant in G. max, were detected in G. latifolia or Glycine tomentella. Annotation of the assembled genome and subsequent filtering yielded a high confidence gene set of 54 475 protein-coding loci. In comparative analysis with five legume species, genes related to defense responses were significantly overrepresented in Glycine-specific orthologous gene families. A total of 304 putative nucleotide-binding site (NBS)-leucine-rich-repeat (LRR) genes were identified in this genome assembly. Different from other legume species, we observed a scarcity of TIR-NBS-LRR genes in G. latifolia. The G. latifolia genome was also predicted to contain genes encoding 367 LRR-receptor-like kinases, a family of proteins involved in basal defense responses and responses to abiotic stress. The genome sequence and annotation of G. latifolia provides a valuable source of alternative alleles and novel genes to facilitate soybean improvement. This study also highlights the efficacy and cost-effectiveness of the application of Chromium linked-reads in diploid plant genome de novo assembly.


Subject(s)
Genome, Plant/genetics , Glycine/genetics , Centromere/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Disease Resistance/genetics , Genes, Plant/genetics , Sequence Analysis, DNA , Tandem Repeat Sequences/genetics
20.
Arch Virol ; 163(8): 2283-2294, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29637429

ABSTRACT

In 2018, the order Mononegavirales was expanded by inclusion of 1 new genus and 12 novel species. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV) and summarizes additional taxonomic proposals that may affect the order in the near future.


Subject(s)
Mononegavirales/classification , Animals , Humans , Mononegavirales/genetics , Mononegavirales/isolation & purification , Mononegavirales Infections/veterinary , Mononegavirales Infections/virology , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...