Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 369: 130943, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34469838

ABSTRACT

This paper addresses sorbitan and sucrose ester in physical transformations of palm mid-fraction (PMF). Both emulsifiers influenced the crystallization properties of PMF, mainly due to emulsifier solubility, which affects its ability to interfere with the kinetics of solution-mediated phase transformations. DSC results corroborate the polymorphism analysis, indicating that the mechanism and rate of phase transformation depend on the chemical structure and amount of each emulsifier. The addition of sorbitan tristearate (STS) and sucrose stearate (S-370) increased the crystallization speed of the PMF and caused changes in the crystallization behavior. STS favored the ß'â†’ß transition, while S-370 stabilized the ß'-form. We can conclude that the presence of emulsifiers dissimilar to the composition of PMF modified its physical structure, either by increasing the liquid fraction or by reducing molecular motion, facilitating or preventing polymorphic transformations.


Subject(s)
Stearates , Sucrose , Crystallization , Hexoses , Palm Oil , Sucrose/analogs & derivatives
2.
Food Chem ; 192: 972-8, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26304437

ABSTRACT

The addition of sucrose behenate for the modification of the physical properties of soft fats, such as soybean oil-based interesterified fat, refined palm oil, and palm mid fraction was studied. The addition of sucrose behenate was verified to affect the crystalline network of fats, changing the hardness and solids profile. The isothermal crystallization behaviors of the fat blends with 1% sucrose behenate were analyzed at 20 and 25 °C. Temperature had a greater effect on the speed of crystallization (k) than the presence of the emulsifier. Sucrose behenate did, however, influence the crystallization mechanism, with changes observed in the Avrami exponent (n). These changes were also observed in the microstructure of the fats. Changes in the polymorphic behavior were observed with the addition of sucrose behenate, such as a possible delay in the α → ß transition for interesterified fat, and the initial formation of the ß polymorph in palm oil.


Subject(s)
Fatty Acids/administration & dosage , Plant Oils/chemistry , Sucrose/administration & dosage , Crystallization , Emulsifying Agents , Fatty Acids/chemistry , Palm Oil , Soybean Oil/chemistry
3.
J Food Sci Technol ; 52(7): 3925-46, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26139862

ABSTRACT

Crystallization of fats is a determinant physical event affecting the structure and properties of fat-based products. The stability of these processed foods is regulated by changes in the physical state of fats and alterations in their crystallization behavior. Problems like polymorphic transitions, oil migration, fat bloom development, slow crystallization and formation of crystalline aggregates stand out. The change of the crystallization behavior of lipid systems has been a strategic issue for the processing of foods, aiming at taylor made products, reducing costs, improving quality, and increasing the applicability and stability of different industrial fats. In this connection, advances in understanding the complex mechanisms that govern fat crystallization led to the development of strategies in order to modulate the conventional processes of fat structuration, based on the use of crystallization modifiers. Different components have been evaluated, such as specific triacyglycerols, partial glycerides (monoacylglycerols and diacylglycerols), free fatty acids, phospholipids and emulsifiers. The knowledge and expertise on the influence of these specific additives or minor lipids on the crystallization behavior of fat systems represents a focus of current interest for the industrial processing of oils and fats. This article presents a comprehensive review on the use of crystallization modifiers in lipid systems, especially for palm oil, cocoa butter and general purpose fats, highlighting: i) the removal, addition or fractionation of minor lipids in fat bases; ii) the use of nucleating agents to modify the crystallization process; iii) control of crystallization in lipid bases by using emulsifiers. The addition of these components into lipid systems is discussed in relation to the phenomena of nucleation, crystal growth, morphology, thermal behavior and polymorphism, with the intention of providing the reader with a complete panorama of the associated mechanisms with crystallization of fats and oils.

SELECTION OF CITATIONS
SEARCH DETAIL
...