Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 130(10): 108001, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36962043

ABSTRACT

We present a femtosecond time-resolved optical pump-soft x-ray probe photoemission study in which we follow the dynamics of charge transfer at the interface of water and anatase TiO_{2}(101). By combining our observation of transient oxygen O 1s core level peak shifts at submonolayer water coverages with Ehrenfest molecular dynamics simulations we find that ultrafast interfacial hole transfer from TiO_{2} to molecularly adsorbed water is completed within the 285 fs time resolution of the experiment. This is facilitated by the formation of a new hydrogen bond between an O_{2c} site at the surface and a physisorbed water molecule. The calculations fully corroborate our experimental observations and further suggest that this process is preceded by the efficient trapping of the hole at the surface of TiO_{2} by hydroxyl species (-OH), that form following the dissociative adsorption of water. At a water coverage exceeding a monolayer, interfacial charge transfer is suppressed. Our findings are directly applicable to a wide range of photocatalytic systems in which water plays a critical role.

2.
Phys Rev Lett ; 125(11): 116403, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32976006

ABSTRACT

Elucidating the carrier density at which strongly bound excitons dissociate into a plasma of uncorrelated electron-hole pairs is a central topic in the many-body physics of semiconductors. However, there is a lack of information on the high-density response of excitons absorbing in the near-to-mid ultraviolet, due to the absence of suitable experimental probes in this elusive spectral range. Here, we present a unique combination of many-body perturbation theory and state-of-the-art ultrafast broadband ultraviolet spectroscopy to unveil the interplay between the ultraviolet-absorbing two-dimensional excitons of anatase TiO_{2} and a sea of electron-hole pairs. We discover that the critical density for the exciton Mott transition in this material is the highest ever reported in semiconductors. These results deepen our knowledge of the exciton Mott transition and pave the route toward the investigation of the exciton phase diagram in a variety of wide-gap insulators.

3.
Sci Adv ; 5(11): eaax2937, 2019 11.
Article in English | MEDLINE | ID: mdl-31819899

ABSTRACT

Controlling the excitonic optical properties of room temperature semiconductors using time-dependent perturbations is key to future optoelectronic applications. The optical Stark effect in bulk and low-dimensional materials has recently shown exciton shifts below 20 meV. Here, we demonstrate dynamical tuning of the exciton properties by photoinduced coherent acoustic phonons in the cheap and abundant wide-gap semiconductor anatase titanium dioxide (TiO2) in single crystalline form. The giant coupling between the excitons and the photoinduced strain pulses yields a room temperature exciton shift of 30 to 50 meV and a marked modulation of its oscillator strength. An advanced ab initio treatment of the exciton-phonon interaction fully accounts for these results, and shows that the deformation potential coupling underlies the generation and detection of the giant acoustic phonon modulations.

4.
Nano Lett ; 18(8): 5007-5014, 2018 08 08.
Article in English | MEDLINE | ID: mdl-30040906

ABSTRACT

The way nuclear motion affects electronic responses has become a very hot topic in materials science. Coherent acoustic phonons can dynamically modify optical, magnetic, and mechanical properties at ultrasonic frequencies, with promising applications as sensors and transducers. Here, by means of ultrafast broadband deep-ultraviolet spectroscopy, we demonstrate that coherent acoustic phonons confined in anatase TiO2 nanoparticles can selectively modulate the oscillator strength of the two-dimensional bound excitons supported by the material. We use many-body perturbation-theory calculations to reveal that the deformation potential is the mechanism behind the generation of the observed coherent acoustic wavepackets. Our results offer a route to manipulate and dynamically tune the properties of excitons in the deep-ultraviolet at room temperature.

5.
J Chem Phys ; 146(12): 124104, 2017 Mar 28.
Article in English | MEDLINE | ID: mdl-28388105

ABSTRACT

The particle-particle random phase approximation (pp-RPA) is a promising method for studying charge transfer(CT) excitations. Through a detailed analysis on two-electron deficient systems, we show that the pp-RPA is always able to recover the long-distance asymptotic -1/R trend for CT excitations as a result of the concerted effect between orbital energies and the pp-RPA kernel. We also provide quantitative results for systems with relatively short donor-acceptor distances. With conventional hybrid or range-separated functionals, the pp-RPA performs much better than time-dependent density functional theory (TDDFT), although it still gives underestimated results which are not as good as TDDFT with system-dependent tuned functionals. For pp-RPA, there remain three great challenges in dealing with CT excitations. First, the delocalized frontier orbitals in strongly correlated systems often lead to difficulty with self-consistent field convergence as well as an incorrect picture with about half an electron transferred. Second, the commonly used density functionals often underestimate the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital (LUMO) for the two-electron deficient species, resulting in systems with delocalized orbitals. Third, the performance of pp-RPA greatly depends on the energy difference between the LUMO and a higher virtual orbital. However, the meaning of the orbital energies for higher virtual orbitals is still not clear. We also discuss the performance of an approximate pp-RPA scheme that uses density functional tight binding (pp-DFTB) as reference and demonstrate that the aforementioned challenges can be overcome by adopting suitable range-separated hybrid functionals. The pp-RPA and pp-DFTB are thus promising general approaches for describing charge transfer excitations.


Subject(s)
Electrons , Quantum Theory
6.
Phys Chem Chem Phys ; 16(18): 8509-14, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24668002

ABSTRACT

Density functional theory (DFT) and Car-Parinello molecular dynamic simulations were employed to investigate the interaction of acetic acid with non-polar facets of ultra-thin ZnO nanowires. We consider both a dry and a water environment as well as different molecule coverages for the hydrated system. Our calculations reveal that the fully-covered nanowire is energetically favored in the aqueous environment at room temperature. We also identified a minor influence of liquid water on the denticity of the ligands for the fully modified system. However, a monodentate adsorption is expected for a half-covered nanowire due to strong ligand-water interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...