Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Xenotransplantation ; 30(5): e12815, 2023.
Article in English | MEDLINE | ID: mdl-37616183

ABSTRACT

Xenotransplantation has the potential to address shortages of organs available for clinical transplantation, but concerns exist regarding potential risks posed by porcine microorganisms and parasites (MP) to the health of human recipients. In this study, a risk-based framework was developed, and expert opinion was elicited to evaluate porcine MP based on swine exposure and risk to human health. Experts identified 255 MP to include in the risk assessment. These were rated by experts for five criteria regarding potential swine exposure in the USA and human health risks. MP were subsequently categorized into three risk mitigation groups according to pre-defined rules: disqualifying porcine MP (due to their pathogenic potential, n = 130); non-disqualifying porcine MP (still relevant to consider for biosecurity or monitoring efforts, n = 40); and alert/watch list (not reported in the USA or MP not in swine, n = 85). Most disqualifying (n = 126) and non-disqualifying (n = 36) porcine MP can effectively be eliminated with high biosecurity programs. This approach supports surveillance and risk mitigation strategies for porcine MP in swine produced for xenotransplantation, such as documentation of freedom from porcine MP, or use of porcine MP screening, monitoring, or elimination options. To the authors' knowledge, this is the first effort to comprehensively identify all relevant porcine MP systematically and transparently evaluate the risk of infection of both donor animals and immunosuppressed human recipients, and the potential health impacts for immunosuppressed human recipients from infected xenotransplantation products from pigs.


Subject(s)
Parasites , Animals , Swine , Humans , Transplantation, Heterologous , Expert Testimony , Risk Assessment , Immunocompromised Host
2.
J Anim Sci ; 98(8)2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32717078

ABSTRACT

While beneficial in rehabilitation, aquatic exercise effects on cartilage and bone metabolism in young, healthy horses has not been well described. Therefore, 30 Quarter Horse yearlings (343 ± 28 kg; 496 ± 12 d of age) were stratified by age, body weight (BW), and sex and randomly assigned to 1 of 3 treatments for 140-d to evaluate effects of aquatic, dry, or no exercise on bone and cartilage metabolism in young horses transitioning to an advanced workload. Treatments included nonexercise control (CON; n = 10), dry treadmill (DRY; n = 10), or aquatic treadmill exercise (H2O; n = 10; water: 60% wither height, WH). Horses were housed individually (3.6 × 3.6 m) from 0600 to 1800 hours, allowed turnout (74 × 70 m) from 1800 to 0600 hours, and fed to meet or exceed requirements. During phase I (days 0 to 112), DRY and H2O walked on treadmills 30 min/d, 5 d/wk. Phase II (days 113 to 140) transitioned to an advanced workload 5 d/wk. Every 14-d, WH, hip height (HH), and BW were recorded. Left third metacarpal radiographs on days 0, 112, and 140 were analyzed for radiographic bone aluminum equivalence (RBAE). Every 28-d, serum samples were analyzed for osteocalcin and C-telopeptide crosslaps of type I collagen (CTX-1), and synovial fluid samples were analyzed for prostaglandin E2, collagenase cleavage neopeptide (C2C), collagenase of type I and type II collagen, and carboxypeptide of type II collagen using ELISAs. All data were analyzed using PROC MIXED of SAS, including random effect of horse within treatment, and repeated effect of day. Baseline treatment differences were accounted for using a covariate. There were treatment × day interactions (P < 0.01) where OC and CTX-1 remained consistent in both exercise groups while inconsistently increasing in CON. There were no treatment differences (P > 0.30) in RBAE, BW, or HH, but all increased over time (P < 0.01). There were no treatment × day interactions of synovial inflammation or markers of cartilage metabolism; however, there was an effect of day for each marker (P<0.03). Changes in biomarkers of cartilage turnover in horses exercised at the walk, whether dry or aquatic, could not be distinguished from horses with access to turnout alone. This study indicates that early forced exercise supports consistent bone metabolism necessary for uniform growth and bone development, and that there are no negative effects of buoyancy on cartilage metabolism in yearlings transitioned from aquatic exercise to a 28-d advanced workload.


Subject(s)
Biomarkers/blood , Bone and Bones/metabolism , Cartilage/metabolism , Horses/physiology , Physical Conditioning, Animal/physiology , Animals , Body Weight , Collagen Type I/analysis , Collagen Type I/blood , Eating , Enzyme-Linked Immunosorbent Assay/veterinary , Female , Inflammation/pathology , Inflammation/veterinary , Male , Osteocalcin/blood , Peptides/blood , Random Allocation , Synovial Fluid/metabolism
3.
J Anim Sci ; 97(8): 3369-3378, 2019 Jul 30.
Article in English | MEDLINE | ID: mdl-31265734

ABSTRACT

The quality and strength of the skeleton is regulated by mechanical loading and adequate mineral intake of calcium (Ca) and phosphorus (P). Whole body vibration (WBV) has been shown to elicit adaptive responses in the skeleton, such as increased bone mass and strength. This experiment was designed to determine the effects of WBV and dietary Ca and P on bone microarchitecture and turnover. A total of 26 growing pigs were utilized in a 60-d experiment. Pigs were randomly assigned within group to a 2 × 2 factorial design with dietary Ca and P concentration (low and adequate) as well as WBV. The adequate diet was formulated to meet all nutritional needs according to the NRC recommendations for growing pigs. Low Ca, P diets had 0.16% lower Ca and 0.13% lower P than the adequate diet. Pigs receiving WBV were vibrated 30 min/d, 3 d/wk at a magnitude of 1 to 2 mm and a frequency of 50 Hz. On days 0, 30, and 60, digital radiographs were taken to determine bone mineral content by radiographic bone aluminum equivalency (RBAE) and serum was collected to measure biochemical markers of bone formation (osteocalcin, OC) and bone resorption (carboxy-terminal collagen crosslinks, CTX-I). At day 60, pigs were euthanized and the left third metacarpal bone was excised for detailed analysis by microcomputed tomography (microCT) to measure trabecular microarchitecture and cortical bone geometry. Maximum RBAE values for the medial or lateral cortices were not affected (P > 0.05) by WBV. Pigs fed adequate Ca and P tended (P = 0.10) to have increased RBAE max values for the medial and lateral cortices. WBV pigs had significantly decreased serum CTX-1 concentrations (P = 0.044), whereas animals fed a low Ca and P diet had increased (P < 0.05) OC concentrations. In bone, WBV pigs showed a significantly lower trabecular number (P = 0.002) and increased trabecular separation (P = 0.003), whereas cortical bone parameters were not significantly altered by WBV or diet (P > 0.05). In summary, this study confirmed the normal physiological responses of the skeleton to a low Ca, P diet. Interestingly, although the WBV protocol utilized in this study did not elicit any significant osteogenic response, decreases in CTX-1 in response to WBV may have been an early local adaptive bone response. We interpret these data to suggest that the frequency and amplitude of WBV was likely sufficient to elicit a bone remodeling response, but the duration of the study may not have captured the full extent of an entire bone remodeling cycle.


Subject(s)
Calcium, Dietary/pharmacology , Osteogenesis/physiology , Phosphorus, Dietary/pharmacology , Swine/physiology , Animals , Bone Density , Bone Remodeling , Bone and Bones/diagnostic imaging , Bone and Bones/drug effects , Bone and Bones/physiology , Calcium, Dietary/metabolism , Diet/veterinary , Female , Male , Phosphorus, Dietary/metabolism , Random Allocation , Vibration , X-Ray Microtomography/veterinary
4.
J Vet Intern Med ; 32(3): 1268-1273, 2018 May.
Article in English | MEDLINE | ID: mdl-29524246

ABSTRACT

BACKGROUND: Calcium carbonate is a common urolith type in small ruminants with no high-yield experimental model to evaluate animal susceptibility or preventative measure response. HYPOTHESIS: That novel plastic winged implants would allow accumulation and quantification of calcium carbonate calculus formation in goats on a high-calcium diet and identify individual variation between goats in the mass of calculi produced. ANIMALS: Eight nonpregnant 3- and 4-year-old Boer-cross does, weighing 22.3-39.5 kg, determined to be healthy based on physical examination, were used in these experiments. METHODS: Prospective cohort study for in vivo experimental model development. Implants were placed into the urinary bladder lumen in 8 goats over 2 evaluation periods. The alfalfa-based ration had a total ration Ca : P of 3.29 and 3.84 : 1, respectively. Urine was collected at 0, 28, 56, and 84 days in the 1st experiment; blood and urine at those timepoints in the 2nd experiment. For each evaluation period, the implants were removed 84 days after implantation and weighed. Accumulated calculi mass was calculated and compared between goats and was analyzed for composition. RESULTS: Implant retention was 100% and 86% in the 2 studies. All goats with retained implants accumulated calcium carbonate at a mean implant gain per day across studies ranging from 0.44 to 57.45 mg. Two goats accumulated (0.44-7.65 mg/day and 33.64 & 57.45 mg/day) significantly more urolith material than the cohort across both studies (P = .047). No routine analytes on blood or urine were found to be explanatory for the difference observed. CONCLUSIONS AND CLINICAL IMPORTANCE: These findings form a basis for implant and diet selection for use in future studies of urolithiasis development and for studies regarding individual susceptibility to urolithiasis.


Subject(s)
Calcium Carbonate/metabolism , Goat Diseases/etiology , Urolithiasis/veterinary , Animals , Calcium Carbonate/analysis , Disease Models, Animal , Female , Goats , Prostheses and Implants , Urinary Bladder , Urinary Calculi/chemistry , Urinary Calculi/veterinary , Urolithiasis/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...