Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Struct Funct ; 226(2): 351-364, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33389044

ABSTRACT

Iron plays an important role in many neurobiological processes, especially in the basal ganglia, the brain structures with the highest concentration. Composed of the pallidum and putamen, the lentiform nucleus plays a key role in the basal ganglia circuitry. With MRI advances, iron-based sequences such as R2* and quantitative susceptibility mapping (QSM) are now available for detecting and quantifying iron in different brain structures. Since their validation using classic iron detection techniques (histology or physical techniques), these sequences have attracted growing clinical attention, especially in the field of extrapyramidal syndromes that particularly affect the basal nuclei. Accurate mapping of iron in these nuclei and their connections is needed to gain a better understanding of this specific anatomy, before considering its involvement in the physiopathological processes. We performed R2* and QSM along with Perls histology, to gain new insights into the distribution of iron in the lentiform nucleus and its surrounding structures, based on four specimens obtained from voluntary donors. We found that iron is preferentially distributed in the anterior part of the globus pallidus externus and the posterior part of the putamen. The lateral wall of the putamen is iron-poor, compared with the lateral medullary lamina and intraputaminal fibers. The relevance of perivascular iron concentration, along with pallido- and putaminofugal iron-rich fibers, is discussed.


Subject(s)
Corpus Striatum/diagnostic imaging , Iron/analysis , Aged , Aged, 80 and over , Autopsy , Brain Mapping , Corpus Striatum/chemistry , Corpus Striatum/pathology , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male
2.
Neurobiol Stress ; 10: 100161, 2019 Feb.
Article in English | MEDLINE | ID: mdl-31309134

ABSTRACT

Exposure to prolonged, unpredictable stress leads to glucocorticoids-mediated long-lasting neuroendocrine abnormalities associated with emotional and cognitive impairments. Excessive levels of serum glucocorticoids (cortisol in humans, corticosterone in rodents) contribute notably to deficits in working memory (WM), a task which heavily relies on functional interactions between the medial prefrontal cortex (PFC) and the dorsal hippocampus (dHPC). However, it is unknown whether stress-induced increases in plasma corticosterone mirror corticosterone levels in specific brain regions critical for WM. After a 6 week-UCMS exposure, C57BL/6 J male mice exhibited increased anxiety- and depressive-like behaviors when measured one week later and displayed WM impairments timely associated with increased plasma corticosterone response. In chronically stressed mice, basal phosphorylated/activated CREB (pCREB) was markedly increased in the PFC and the CA1 area of the dHPC and WM testing did not elicit any further increase in pCREB in the two regions. Using microdialysis samples from freely-moving mice, we found that WM testing co-occurred with a rapid and sustained increase in corticosterone response in the PFC while there was a late, non-significant rise of corticosterone in the dHPC. The results also show that non-stressed mice injected with corticosterone (2 mg/kg i.p.) before WM testing displayed behavioral and molecular alterations similar to those observed in stressed animals while a pre-WM testing metyrapone injection (35 mg/kg i.p.), a corticosterone synthesis inhibitor, prevented the effects of UCMS exposure. Overall, the abnormal regional increase of corticosterone concentrations mainly in the PFC emerges as a key factor of enduring WM dysfunctions in UCMS-treated animals.

3.
Acta Neuropathol Commun ; 6(1): 25, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29615132

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is characterized by the accumulation of ß-amyloid (Aß) peptides and hyperphosphorylated tau protein accompanied by neuronal loss. Aß accumulation has been associated with an impaired sphingosine 1-phosphate (S1P) metabolism. S1P is generated by sphingosine kinases (SphKs), of which there are two isoenzymes SphK1 and SphK2, and degraded by the sphingosine 1-phosphate lyase (SPL). We previously reported, that both a decrease in SphK1 expression and an increase in SPL expression, correlated with amyloid deposits in the entorhinal cortex of AD brains, suggesting a global loss of pro-survival S1P in AD neurons. SphK2 contribution has also been examined in AD yielding to conflicting results that may reflect the complexity of SphK2 regulation. The subcellular localization of SphK2, hence the compartmentalization of generated S1P, is recognized to play a crucial role in dictating either its pro-survival or pro-apoptotic functions. We therefore aimed at studying the expression of SphK2 and notably its subcellular localization in brain tissues from patients with AD. RESULTS: We report that a decrease in SphK2 protein cytosolic expression correlated with the density of amyloid deposits in a cohort of 25 post-mortem brains. Interestingly, we observed that the equilibrium between cytoplasmic and nuclear SphK2 is disrupted and showed that SphK2 is preferentially localized in the nucleus in AD brain extracts as compared to control extracts, with a marked increase of cleaved SphK2. CONCLUSIONS: Our results suggest that a shift in the subcellular localization of the S1P generating SphK2 may compromise the well established pro-survival cytosolic S1P by favoring the production of nuclear S1P associated with adverse effects in AD pathogenesis.


Subject(s)
Alzheimer Disease/pathology , Brain/ultrastructure , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Subcellular Fractions/metabolism , Aged , Aged, 80 and over , Brain/pathology , Female , Humans , Lysophospholipids/metabolism , Male , Middle Aged , Sphingosine/analogs & derivatives , Sphingosine/metabolism
4.
Article in English | MEDLINE | ID: mdl-29409919

ABSTRACT

This study investigated whether sst2 gene deletion interacts with age and chronic stress exposure to produce exacerbated emotional and cognitive ageing. Middle-aged (10-12 month) sst2 knockout (sst2KO) and wild-type (WT) mice underwent an unpredictable chronic mild stress (UCMS) procedure for 6 weeks or no stress for control groups. This was followed by a battery of tests to assess emotional and cognitive functions and neuroendocrine status (CORT level). A re-evaluation was performed 6 months later (i.e. with 18-month-old mice). UCMS reproduced neuroendocrine and behavioral features of stress-related disorders such as elevated circulating CORT levels, physical deteriorations, increased anxiety- and depressive-like behaviors and working memory impairments. sst2KO mice displayed behavioral alterations which were similar to stressed WT and exhibited exacerbated changes following UCMS exposure. The evaluations performed in the older mice showed significant long-term effects of UCMS exposure. Old sst2KO mice previously exposed to UCMS exhibited spatial learning and memory accuracy impairments and high levels of anxiety-like behaviors which drastically added to the effects of normal ageing. Spatial abilities and emotionality scores (mean z-scores) measured both at the UCMS outcome and 6 months later were correlated with the initially measured CORT levels in middle-age. The present findings indicate that the deletion of the sst2 receptor gene produces chronic hypercorticosteronemia and exacerbates sensitivity to stressors which over time, have consequences on ageing brain function processes.


Subject(s)
Aging/metabolism , Aging/psychology , Cognition/physiology , Emotions/physiology , Receptors, Somatostatin/deficiency , Stress, Psychological/metabolism , Animals , Anxiety/metabolism , Chronic Disease , Cognitive Dysfunction/metabolism , Corticosterone/blood , Depression/metabolism , Disease Models, Animal , Gene Deletion , Memory Disorders/metabolism , Memory, Short-Term/physiology , Mice, Inbred C57BL , Mice, Knockout , Receptors, Somatostatin/genetics
5.
Addict Biol ; 22(4): 898-910, 2017 Jul.
Article in English | MEDLINE | ID: mdl-26860616

ABSTRACT

This study intends to determine whether long-lasting glucocorticoids (GCs) dysregulation in the prefrontal cortex (PFC) or the dorsal hippocampus (dHPC) play a causal role in the maintenance of working memory (WM) deficits observed after alcohol withdrawal. Here, we report that C57/BL6 male mice submitted to 6 months alcohol consumption (12 percent v/v) followed by 1 (1W) or 6 weeks (6W) withdrawal periods exhibit WM deficits in a spatial alternation task and an exaggerated corticosterone rise during and after memory testing in the PFC but not the dHPC. In contrast, emotional reactivity evaluated in a plus-maze is altered only in the 1W group. No behavioral alterations are observed in mice still drinking alcohol. To determine the causal role of corticosterone in the withdrawal-associated long-lasting WM deficits, we further show that a single intraperitoneal injection injection of metyrapone (an inhibitor of corticosterone synthesis) 30 minutes before testing, prevents withdrawal-associated WM deficits and reestablishes PFC activity, as assessed by increased phosphorylated C-AMP Response Element-binding protein (CREB) immunoreactivity in withdrawn mice. Finally, we show that intra-PFC blockade of mineralocorticoid receptors by infusion of spironolactone and, to a lesser extent, of GCs receptors by injection of mifepristone reverses the WM deficits induced by withdrawal whereas the same injections into the dHPC do not. Overall, our study evidences that long-lasting GCs dysfunction selectively in the PFC is responsible for the emergence and maintenance of WM impairments after withdrawal and that blocking prefrontal mineralocorticoid receptors receptors restores WM in withdrawn animals.


Subject(s)
Alcoholism/complications , Corticosterone/blood , Memory Disorders/chemically induced , Memory, Short-Term/drug effects , Prefrontal Cortex/metabolism , Spatial Memory/drug effects , Substance Withdrawal Syndrome/complications , Alcoholism/blood , Animals , Behavior, Animal/drug effects , Disease Models, Animal , Hippocampus , Male , Memory Disorders/blood , Mice , Mice, Inbred C57BL , Prefrontal Cortex/drug effects , Substance Withdrawal Syndrome/blood
6.
Front Pharmacol ; 7: 492, 2016.
Article in English | MEDLINE | ID: mdl-28066242

ABSTRACT

Donepezil, an acetylcholinesterase inhibitor, induces only moderate symptomatic effects on memory in Alzheimer's disease patients. An alternative strategy for treatment of cognitive symptoms could be to act simultaneously on both histaminergic and cholinergic pathways, to create a synergistic effect. To that aim, 14 month old C57/Bl6 mice were administered per oesophagy during nine consecutive days with Donepezil (at 0.1 and 0.3 mg/kg) and S 38093 (at 0.1, 0.3, and 1.0 mg/kg), a H3 histaminergic antagonist developed by Servier, alone or in combination and tested for memory in a contextual memory task that modelized the age-induced memory dysfunction. The present study shows that the combination of Donepezil and S 38093 induced a dose-dependent synergistic memory-enhancing effect in middle-aged mice with a statistically higher size of effect never obtained with compounds alone and without any pharmacokinetic interaction between both compounds. We demonstrated that the memory-enhancing effect of the S 38093 and Donepezil combination is mediated by its action on the septo-hippocampal circuitry, since it canceled out the reduction of CREB phosphorylation (pCREB) observed in these brain areas in vehicle-treated middle-aged animals. Overall, the effects of drug combinations on pCREB in the hippocampus indicate that the synergistic promnesiant effects of the combination on memory performance in middle-aged mice stem primarily from an enhancement of neural activity in the septo-hippocampal system.

7.
Front Behav Neurosci ; 8: 166, 2014.
Article in English | MEDLINE | ID: mdl-24860451

ABSTRACT

Most of the deleterious effects of stress on memory retrieval are due to a dysfunction of the hippocampo-prefrontal cortex interplay. The role of the stress-induced regional corticosterone increase in such dysfunction remains however unclear, since there is no published study as yet dedicated to measuring corticosterone concentrations simultaneously in both the prefrontal cortex (mPFC) and the hippocampus (dHPC) in relation with memory impairments. To that aim, we first showed in Experiment 1 that an acute stress (3 electric footschocks; 0.9 mA each) delivered before memory testing reversed the memory retrieval pattern (MRP) in a serial discrimination task in which mice learned two successive discriminations. More precisely, whereas non-stressed animals remembered accurately the first learned discrimination and not the second one, stressed mice remembered more accurately the second discrimination but not the first one. We demonstrated that local inactivation of dHPC or mPFC with the anesthetic lidocaine recruited the dHPC activity in non-stress conditions whereas the stress-induced MRP inversion recruited the mPFC activity. In a second experiment, we showed that acute stress induced a very similar time-course evolution of corticosterone rises within both the mPFC and dHPC. In a 3rd experiment, we found however that in situ injections of corticosterone either within the mPFC or the dHPC before memory testing favored the emergence of the mPFC-dependent MRP but blocked the emergence of the dHPC-dependent one. Overall, our study evidences that the simultaneous increase of corticosterone after stress in both areas induces a shift from dHPC (non-stress condition) to mPFC-dependent MRP and that corticosterone is critically involved in mediating the deleterious effects of stress on cognitive functions involving the mPFC-HPC interplay.

8.
Article in English | MEDLINE | ID: mdl-24570662

ABSTRACT

It is now established that vitamin A and its derivatives, retinoic acid (RA), are required for cognitive functions in adulthood. RA hyposignaling and hyperactivity of glucocorticoid (GC) pathway appear concomitantly during aging and would contribute to the deterioration of hippocampal synaptic plasticity and functions. Furthermore, recent data have evidenced counteracting effects of retinoids on GC signaling pathway. In the present study, we addressed the following issue: whether the stimulation of RA pathway could modulate intrahippocampal corticosterone (CORT) levels in middle-aged mice and thereby impact on hippocampal plasticity and cognitive functions. We firstly investigated the effects of vitamin A supplementation and RA treatment in middle-aged mice, on contextual serial discrimination task, a paradigm which allows the detection of early signs of age-related hippocampal-dependent memory dysfunction. We then measured intrahippocampal CORT concentrations by microdialysis before and after a novelty-induced stress. Our results show that both RA treatment and vitamin A supplementation improve "episodic-like" memory in middle-aged mice but RA treatment appears to be more efficient. Moreover, we show that the beneficial effect of RA on memory is associated to an increase in hippocampal PSD-95 expression. In addition, intrahippocampal CORT levels are reduced after novelty-induced stress in RA-treated animals. This effect cannot be related to a modulation of hippocampal 11ß-HSD1 expression. Interestingly, RA treatment induces a modulation of RA receptors RARα and RARß expression in middle-aged mice, a finding which has been correlated with the amplitude of intrahippocampal CORT levels after novelty-induced stress. Taken together, our results suggest that the preventive action of RA treatment on age-related memory deficits in middle-aged mice could be, at least in part, due to an inhibitory effect of retinoids on GC activity.

9.
Endocrinology ; 153(10): 4766-74, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22930537

ABSTRACT

We aimed at demonstrating that corticosteroid binding globulin (CBG), a plasma glycoprotein binding glucocorticoids with high affinity in blood, endorses a major role under stress conditions by regulating free glucocorticoid access to the brain and thereby influences glucocorticoid-dependent behaviors. Hence, we compared CBG-deficient mice (Cbg-/-) and their controls (Cbg+/+) in a specific memory task, i.e. the delayed alternation behavior, requiring memory retrieval both under stress and nonstress conditions and previously shown to be dependent on hippocampal glucocorticoid levels. Our results evidence that Cbg-/- mice, unlike controls, remain insensitive to stress applied before memory retrieval. Furthermore, under stress conditions, we observed a blunted surge of corticosterone (CORT) in plasma and no free CORT rise in the hippocampus of Cbg-/-. Moreover, intrahippocampal infusion of CORT through implanted cannulae was used to mimic stress CORT rise before memory retrieval. This infusion of CORT reproduced memory retrieval impairments in Cbg-/- as in Cbg+/+ controls. Finally, we provide evidence that Cbg-/- mice exhibit a normal adrenal response to stress and ACTH. Given that CBG deficiency is known to markedly impact on CORT clearance from plasma, our current article demonstrates that Cbg-/- insensitivity in memory retrieval after stress results from the blunted CORT response due to increased CORT clearance. Overall, our data suggest that the impact of CBG genetic deficiency on various behavioral patterns reported previously stems from a smaller CORT reservoir in blood. Inasmuch as CBG discloses interindividual variations, such a parameter ought to be taken into account when studying stress-induced glucocorticoid action in brain.


Subject(s)
Corticosterone/pharmacology , Hippocampus/metabolism , Maze Learning/physiology , Memory/physiology , Transcortin/genetics , Adrenal Glands/metabolism , Animals , Corticosterone/blood , Gene Expression , Hippocampus/drug effects , Maze Learning/drug effects , Memory/drug effects , Mice , Mice, Knockout , Protein Transport , Stress, Psychological/metabolism , Transcortin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...