Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cell ; 186(12): 2544-2555.e13, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37295402

ABSTRACT

In poikilotherms, temperature changes challenge the integration of physiological function. Within the complex nervous systems of the behaviorally sophisticated coleoid cephalopods, these problems are substantial. RNA editing by adenosine deamination is a well-positioned mechanism for environmental acclimation. We report that the neural proteome of Octopus bimaculoides undergoes massive reconfigurations via RNA editing following a temperature challenge. Over 13,000 codons are affected, and many alter proteins that are vital for neural processes. For two highly temperature-sensitive examples, recoding tunes protein function. For synaptotagmin, a key component of Ca2+-dependent neurotransmitter release, crystal structures and supporting experiments show that editing alters Ca2+ binding. For kinesin-1, a motor protein driving axonal transport, editing regulates transport velocity down microtubules. Seasonal sampling of wild-caught specimens indicates that temperature-dependent editing occurs in the field as well. These data show that A-to-I editing tunes neurophysiological function in response to temperature in octopus and most likely other coleoids.


Subject(s)
Octopodiformes , Proteome , Animals , Proteome/metabolism , Octopodiformes/genetics , RNA Editing , Temperature , Nervous System/metabolism , Adenosine Deaminase/metabolism , RNA/metabolism
2.
bioRxiv ; 2023 May 25.
Article in English | MEDLINE | ID: mdl-37163031

ABSTRACT

Limb-Girdle Muscular Dystrophy Type-2B/2R is caused by mutations in the dysferlin gene ( DYSF ). This disease has two known pathogenic missense mutations that occur within dysferlin's C2A domain, namely C2A W52R and C2A V67D . Yet, the etiological rationale to explain the disease linkage for these two mutations is still unclear. In this study, we have presented evidence from biophysical, computational, and immunological experiments which suggest that these missense mutations interfere with dysferlin's ability to repair cells. The failure of C2A W52R and C2A V67D to initiate membrane repair arises from their propensity to form stable amyloid. The misfolding of the C2A domain caused by either mutation exposes ß-strands, which are predicted to nucleate classical amyloid structures. When dysferlin C2A amyloid is formed, it triggers the NLRP3 inflammasome, leading to the secretion of inflammatory cytokines, including IL-1ß. The present study suggests that the muscle dysfunction and inflammation evident in Limb-Girdle Muscular Dystrophy types-2B/2R, specifically in cases involving C2A W52R and C2A V67D , as well as other C2 domain mutations with considerable hydrophobic core involvement, may be attributed to this mechanism.

3.
bioRxiv ; 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36993259

ABSTRACT

Charged residues on the surface of proteins are critical for both protein stability and interactions. However, many proteins contain binding regions with a high net-charge that may destabilize the protein but are useful for binding to oppositely charged targets. We hypothesized that these domains would be marginally stable, as electrostatic repulsion would compete with favorable hydrophobic collapse during folding. Furthermore, by increasing the salt concentration we predict that these protein folds would be stabilized by mimicking some of the favorable electrostatic interactions that take place during target binding. We varied the salt and urea concentrations to probe the contributions of electrostatic and hydrophobic interactions for the folding of the 60-residue yeast SH3 domain found in Abp1p. The SH3 domain was significantly stabilized with increased salt concentrations according to the Debye-Huckel limiting law. Molecular dynamics and NMR show that sodium ions interact with all 15 acidic residues but do little to change backbone dynamics or overall structure. Folding kinetics experiments show that the addition of urea or salt primarily affects the folding rate, indicating that almost all the hydrophobic collapse and electrostatic repulsion occurs in the transition state. After the transition state formation, modest yet favorable short-range salt-bridges are formed along with hydrogen bonds, as the native state fully folds. Thus, hydrophobic collapse offsets electrostatic repulsion to ensure this highly charged binding domain can still fold and be ready to bind to its charged peptide targets, a property that is likely evolutionarily conserved over one billion years. Statement for broader audience: Some protein domains are highly charged because they are adapted to bind oppositely charged proteins and nucleic acids. However, it is unknown how these highly charged domains fold as during folding there will be significant repulsion between like-charges. We investigate how one of these highly charged domains folds in the presence of salt, which can screen the charge repulsion and make folding easier, allowing us to understand how folding occurs despite the protein’s high charge. Supplementary material: Supplementary material document containing additional details on protein expression methods, thermodynamics and kinetics equations, and the effect of urea on electrostatic interactions, as well as 4 supplemental figures and 4 supplemental data tables. ( Supplementary_Material.docx ), 15 pages Supplemental excel file containing covariation data across AbpSH3 orthologs ( FileS1.xlsx ).

4.
Protein Sci ; 32(5): e4635, 2023 05.
Article in English | MEDLINE | ID: mdl-36992534

ABSTRACT

Charged residues on the surface of proteins are critical for both protein stability and interactions. However, many proteins contain binding regions with a high net charge that may destabilize the protein but are useful for binding to oppositely charged targets. We hypothesized that these domains would be marginally stable, as electrostatic repulsion would compete with favorable hydrophobic collapse during folding. Furthermore, by increasing the salt concentration, we predict that these protein folds would be stabilized by mimicking some of the favorable electrostatic interactions that take place during target binding. We varied the salt and urea concentrations to probe the contributions of electrostatic and hydrophobic interactions for the folding of the yeast SH3 domain found in Abp1p. The SH3 domain was significantly stabilized with increased salt concentrations due to Debye-Huckel screening and a nonspecific territorial ion-binding effect. Molecular dynamics and NMR show that sodium ions interact with all 15 acidic residues but do little to change backbone dynamics or overall structure. Folding kinetics experiments show that the addition of urea or salt primarily affects the folding rate, indicating that almost all the hydrophobic collapse and electrostatic repulsion occur in the transition state. After the transition state formation, modest yet favorable short-range salt bridges are formed along with hydrogen bonds, as the native state fully folds. Thus, hydrophobic collapse offsets electrostatic repulsion to ensure this highly charged binding domain can still fold and be ready to bind to its charged peptide targets, a property that is likely evolutionarily conserved over 1 billion years.


Subject(s)
Protein Folding , src Homology Domains , Thermodynamics , Peptides/chemistry , Proteins/chemistry , Molecular Dynamics Simulation , Urea , Kinetics
5.
PLoS One ; 17(7): e0270188, 2022.
Article in English | MEDLINE | ID: mdl-35901179

ABSTRACT

Ferlins are complex, multi-domain proteins, involved in membrane trafficking, membrane repair, and exocytosis. The large size of ferlin proteins and the lack of consensus regarding domain boundaries have slowed progress in understanding molecular-level details of ferlin protein structure and function. However, in silico protein folding techniques have significantly enhanced our understanding of the complex ferlin family domain structure. We used RoseTTAFold to assemble full-length models for the six human ferlin proteins (dysferlin, myoferlin, otoferlin, Fer1L4, Fer1L5, and Fer1L6). Our full-length ferlin models were used to obtain objective domain boundaries, and these boundaries were supported by AlphaFold2 predictions. Despite the differences in amino acid sequence between the ferlin proteins, the domain ranges and distinct subdomains in the ferlin domains are remarkably consistent. Further, the RoseTTAFold/AlphaFold2 in silico boundary predictions allowed us to describe and characterize a previously unknown C2 domain, ubiquitous in all human ferlins, which we refer to as C2-FerA. At present, the ferlin domain-domain interactions implied by the full-length in silico models are predicted to have a low accuracy; however, the use of RoseTTAFold and AlphaFold2 as a domain finder has proven to be a powerful research tool for understanding ferlin structure.


Subject(s)
Muscle Proteins , Amino Acid Sequence , Humans , Muscle Proteins/metabolism
6.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Article in English | MEDLINE | ID: mdl-33836576

ABSTRACT

Neurotransmitter release during synaptic transmission comprises a tightly orchestrated sequence of molecular events, and Munc13-1 is a cornerstone of the fusion machinery. A forward genetic screen for defects in neurotransmitter release in Caenorhabditis elegans identified a mutation in the Munc13-1 ortholog UNC-13 that eliminated its unique and deeply conserved C-terminal module (referred to as HC2M) containing a Ca2+-insensitive C2 domain flanked by membrane-binding helices. The HC2M module could be functionally replaced in vivo by protein domains that localize to synaptic vesicles but not to the plasma membrane. HC2M is broadly conserved in other Unc13 family members and is required for efficient synaptic vesicle priming. We propose that the HC2M domain evolved as a vesicle/endosome adaptor and acquired synaptic vesicle specificity in the Unc13ABC protein family.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Synaptic Transmission , Synaptic Vesicles/metabolism , Amino Acid Sequence , Animals , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Exocytosis , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mutation , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Neurotransmitter Agents/metabolism , Protein Domains , Sequence Deletion
7.
Proc Natl Acad Sci U S A ; 117(28): 16363-16372, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32601205

ABSTRACT

The epididymal lumen contains a complex cystatin-rich nonpathological amyloid matrix with putative roles in sperm maturation and sperm protection. Given our growing understanding for the biological function of this and other functional amyloids, the problem still remains: how functional amyloids assemble including their initial transition to early oligomeric forms. To examine this, we developed a protocol for the purification of nondenatured mouse CRES, a component of the epididymal amyloid matrix, allowing us to examine its assembly to amyloid under conditions that may mimic those in vivo. Herein we use X-ray crystallography, solution-state NMR, and solid-state NMR to follow at the atomic level the assembly of the CRES amyloidogenic precursor as it progressed from monomeric folded protein to an advanced amyloid. We show the CRES monomer has a typical cystatin fold that assembles into highly branched amyloid matrices, comparable to those in vivo, by forming ß-sheet assemblies that our data suggest occur via two distinct mechanisms: a unique conformational switch of a highly flexible disulfide-anchored loop to a rigid ß-strand and by traditional cystatin domain swapping. Our results provide key insight into our understanding of functional amyloid assembly by revealing the earliest structural transitions from monomer to oligomer and by showing that some functional amyloid structures may be built by multiple and distinctive assembly mechanisms.


Subject(s)
Amyloid/chemistry , Amyloidogenic Proteins/chemistry , Cystatins/chemistry , Amyloid/metabolism , Amyloid/ultrastructure , Amyloidogenic Proteins/metabolism , Animals , Crystallography, X-Ray , Cystatins/metabolism , Epididymis/metabolism , Magnetic Resonance Spectroscopy , Male , Mice , Models, Molecular , Protein Conformation , Protein Folding , Protein Multimerization
8.
Neuron ; 107(1): 52-64.e7, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32362337

ABSTRACT

At neuronal synapses, synaptotagmin-1 (syt1) acts as a Ca2+ sensor that synchronizes neurotransmitter release with Ca2+ influx during action potential firing. Heterozygous missense mutations in syt1 have recently been associated with a severe but heterogeneous developmental syndrome, termed syt1-associated neurodevelopmental disorder. Well-defined pathogenic mechanisms, and the basis for phenotypic heterogeneity in this disorder, remain unknown. Here, we report the clinical, physiological, and biophysical characterization of three syt1 mutations from human patients. Synaptic transmission was impaired in neurons expressing mutant variants, which demonstrated potent, graded dominant-negative effects. Biophysical interrogation of the mutant variants revealed novel mechanistic features concerning the cooperative action, and functional specialization, of the tandem Ca2+-sensing domains of syt1. These mechanistic studies led to the discovery that a clinically approved K+ channel antagonist is able to rescue the dominant-negative heterozygous phenotype. Our results establish a molecular cause, basis for phenotypic heterogeneity, and potential treatment approach for syt1-associated neurodevelopmental disorder.


Subject(s)
Neurodevelopmental Disorders/genetics , Neurons/physiology , Synaptic Transmission/genetics , Synaptotagmin I/genetics , 4-Aminopyridine/pharmacology , Animals , Cells, Cultured , Humans , Mice , Neurodevelopmental Disorders/physiopathology , Neurons/drug effects , Potassium Channel Blockers/pharmacology , Synaptic Transmission/drug effects , Synaptotagmin I/chemistry
9.
Protein Expr Purif ; 152: 84-91, 2018 12.
Article in English | MEDLINE | ID: mdl-30041031

ABSTRACT

Protein purification is essential in the study of protein structure and function, and the development of novel therapeutics. Many studies require purifying multiple proteins at once, increasing the demand for improved purification methods. We hypothesized that multiple chromatography columns could be interfaced with a multi-well collection plate for rapid and convenient protein purification without the need of expensive instrumentation. As such, we developed a multi-column plate adapter (MCPA), which provides an economical yet versatile and time efficient, high-throughput protein purification system. The MCPA system simultaneously purified milligrams of different proteins under gravity or under vacuum for faster purification. The MCPA handles up to twenty-four 12 mL columns and multiple MCPA's in sequence allow milligram-scale purification of 96 different samples with relative ease. We also used the MCPA system for large scale affinity purification of four proteins, providing sufficient yields and purity for protein crystallization and biophysical characterization. The MCPA system is ideal for optimizing resin type and volume or any other purification parameter by customizing individual columns during the same purification. The high-throughput and versatile nature of this system should prove to be useful in obtaining adequate amounts of protein for subsequent analyses in any laboratory setting.


Subject(s)
Chromatography, Affinity/instrumentation , High-Throughput Screening Assays/instrumentation , Microfilament Proteins/isolation & purification , Saccharomyces cerevisiae Proteins/isolation & purification , Saccharomyces cerevisiae/chemistry , Chromatography, Affinity/economics , Chromatography, Affinity/methods , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , High-Throughput Screening Assays/economics , High-Throughput Screening Assays/methods , Humans , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Mutation , Pressure , Protein Domains , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Vacuum
10.
PLoS One ; 11(1): e0146232, 2016.
Article in English | MEDLINE | ID: mdl-26745729

ABSTRACT

The kinetics of folding and unfolding underlie protein stability and quantification of these rates provides important insights into the folding process. Here, we present a simple high throughput protein unfolding kinetic assay using a plate reader that is applicable to the studies of the majority of 2-state folding proteins. We validate the assay by measuring kinetic unfolding data for the SH3 (Src Homology 3) domain from Actin Binding Protein 1 (AbpSH3) and its stabilized mutants. The results of our approach are in excellent agreement with published values. We further combine our kinetic assay with a plate reader equilibrium assay, to obtain indirect estimates of folding rates and use these approaches to characterize an AbpSH3-peptide hybrid. Our high throughput protein unfolding kinetic assays allow accurate screening of libraries of mutants by providing both kinetic and equilibrium measurements and provide a means for in-depth ϕ-value analyses.


Subject(s)
Microfilament Proteins/chemistry , Chromatography, Gel , Guanidine/chemistry , High-Throughput Screening Assays , Kinetics , Microfilament Proteins/isolation & purification , Models, Molecular , Protein Denaturation , Protein Stability , Proteolysis , Scattering, Small Angle , Solutions , Thermodynamics , X-Ray Diffraction , src Homology Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...