Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(4): e0265960, 2022.
Article in English | MEDLINE | ID: mdl-35421106

ABSTRACT

Mislabeling of seafood is a global phenomenon that can misrepresent the status and level of consumption of wild fish stocks while concealing the use of many other wild species or those originating from aquaculture and sold as substitutes. We conducted a DNA barcoding study in three cities within Mexico (Mazatlan, Mexico City and Cancun) and sequenced the COI gene in 376 fish samples sold as 48 distinct commercial names at fish markets, grocery stores, and restaurants. Our goal was to identify the main species sold, their mislabeling rates and the species most used as substitutes. Overall, the study-wide mislabeling rate was 30.8% (95% CI 26.4-35.6). Half of the samples collected belonged to five species traded globally (yellowfin tuna, Atlantic salmon, mahi, swai, and tilapia), most of them with important aquaculture or ranching production levels. These species were commonly used as substitutes for other species and showed low mislabeling rates themselves (≤ 11%, except mahi mahi with 39% mislabeling). The other half of the samples revealed nearly 100 species targeted by small-scale fishers in Mexico and sold under 42 distinct commercial names. Popular local commercial names (dorado, marlin, mero, robalo, mojarra, huachinango, pargo, sierra) showed the highest mislabeling rates (36.3% to 94.4%) and served to sell many of the 53 species identified as substitutes in our study. We discuss the observed patterns in relation to landing and import data showing differences in availability of commercial species and the links to explain observed mislabeling rates and the use of a species as a substitute for other species. We also outline some of the implications of establishing a labeling and traceability standard as an alternative to improve transparency in the trade of seafood products in Mexico.


Subject(s)
DNA Barcoding, Taxonomic , Perciformes , Animals , Fishes/genetics , Mexico , Restaurants , Seafood/analysis
2.
PeerJ ; 9: e10750, 2021.
Article in English | MEDLINE | ID: mdl-33575131

ABSTRACT

Seafood mislabeling has the potential to mask changes in the supply of species due to overfishing, while also preventing consumers from making informed choices about the origin, quality and sustainability of their food. Thus, there is a need to understand mislabeling and analyze the potential causes behind it to propose solutions. We conducted a COI DNA barcoding study in La Paz, Baja California Sur, Mexico, with 74 samples from fish markets and 50 samples from restaurants. We identified 38 species sold under 19 commercial names, from which at least ∼80% came from local small-scale fisheries. Overall, 49 samples, representing 40% (95% CI [31.4-48.3]) were considered mislabeled in our samples. Based on analyses where species were assigned to three price categories, economic incentives were associated with approximately half of the mislabeling events observed, suggesting that other motivating factors might simultaneously be at play. Using a network approach to describe both mislabeling (when species are mislabeled as the focal species) and substitution (when the focal species is used as substitute for others), we calculated proxies for the net availability of each species in the market. We found that local fish landings were a significant predictor of the net availability of the 10 most important commercial species at retail, but this true availability was masked to the eyes of the final consumer by both mislabeling and substitution. We hypothesize that the level of supply of each species could help explain mislabeling and substitution rates, where species in low supply and high demand could show higher mislabeling rates and rarely be used as substitutes, while species in high supply and low demand could be used as substitutes for the preferred species. Other factors affecting mislabeling include national regulations that restrict the fishing or commercialization of certain species and local and global campaigns that discourage specific patterns of consumption. We discuss how these factors might influence mislabeling and propose some solutions related to communication and education efforts to this local and global challenge.

3.
PeerJ ; 6: e4295, 2018.
Article in English | MEDLINE | ID: mdl-29472993

ABSTRACT

The fishery for octopus in Northwest Mexico has increased to over 2,000 tons annually, but to date the specific composition of the catch has been ignored. With at least three main species targeted by artisanal fisheries in the region with distinct life histories, the lack of basic biological information about the distribution, metapopulation size and structure of each species could impede effective fisheries management to avoid overexploitation. We tested if different life histories of three species of octopus could help predict observed patterns of genetic diversity, population dynamics, structure and connectivity and how this information could be relevant to the sustainable management of the fishery. We sequenced two mitochondrial genes and genotyped seven nuclear microsatellite loci to identify the distribution of each species in 20 locations from the Gulf of California and the west coast of the Baja California peninsula. We tested five hypotheses derived from population genetic theory based on differences in the fecundity and dispersal potential for each species. We discovered that Octopus bimaculoides with low fecundity and direct development (without a planktonic phase) had lower average effective population size and genetic diversity, but higher levels of kinship, population structure, and richness of private alleles, than the other two species. These features indicated limited dispersal and high local recruitment. In contrast, O. bimaculatus and O. hubbsorum with higher fecundity and planktonic phase as paralarvae had higher effective population size and genetic diversity, and overall lower kinship and population structure than O. bimaculoides. These observations supported higher levels of gene flow over a larger geographical scale. O. bimaculatus with the longest planktonic paralarval duration and therefore larger dispersal potential had differences in the calculated parameters possibly associated with increased connectivity. We propose O. bimaculoides is more susceptible to over exploitation of small, isolated populations and could have longer recovery times than the other two species. This species may benefit from distinct fishery management within each local population. O. bimaculatus and O. hubbsorum may benefit from fishery management that takes into account metapopulation structure over larger geographic scales and the directionality and magnitude of larval dispersal driven by ocean currents and population connectivity among individuals of each locality. The distribution of each species and variations in their reproductive phenology is also important to consider when establishing marine reserves or seasonal fishing closures.

SELECTION OF CITATIONS
SEARCH DETAIL
...