Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
NPJ Biofilms Microbiomes ; 8(1): 80, 2022 10 17.
Article in English | MEDLINE | ID: mdl-36253388

ABSTRACT

Proteomic studies on cyanobacterial biofilms can be an effective approach to unravel metabolic pathways involved in biofilm formation and, consequently, obtain more efficient biofouling control strategies. Biofilm development by the filamentous cyanobacterium Toxifilum sp. LEGE 06021 was evaluated on different surfaces, glass and perspex, and at two significant shear rates for marine environments (4 s-1 and 40 s-1). Higher biofilm development was observed at 4 s-1. Overall, about 1877 proteins were identified, and differences in proteome were more noticeable between hydrodynamic conditions than those found between surfaces. Twenty Differentially Expressed Proteins (DEPs) were found between 4 s-1 vs. 40 s-1. On glass, some of these DEPs include phage tail proteins, a carotenoid protein, cyanophynase glutathione-dependent formaldehyde dehydrogenase, and the MoaD/ThiS family protein, while on perspex, DEPs include transketolase, dihydroxy-acid dehydratase, iron ABC transporter substrate-binding protein and protein NusG. This study contributes to developing a standardized protocol for proteomic analysis of filamentous cyanobacterial biofilms. This kind of proteomic analysis can also be useful for different research fields, given the broad spectrum of promising secondary metabolites and added-value compounds produced by cyanobacteria, as well as for the development of new antibiofilm strategies.


Subject(s)
Cyanobacteria , Hydrodynamics , ATP-Binding Cassette Transporters , Biofilms , Carotenoids , Glutathione , Hydro-Lyases , Iron , Polymethyl Methacrylate , Proteome , Proteomics , Transketolase
2.
Antibiotics (Basel) ; 11(7)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35884190

ABSTRACT

In the last two decades many reports have addressed the application of artificial intelligence (AI) in the search and design of antimicrobial peptides (AMPs). AI has been represented by machine learning (ML) algorithms that use sequence-based features for the discovery of new peptidic scaffolds with promising biological activity. From AI perspective, evolutionary algorithms have been also applied to the rational generation of peptide libraries aimed at the optimization/design of AMPs. However, the literature has scarcely dedicated to other emerging non-conventional in silico approaches for the search/design of such bioactive peptides. Thus, the first motivation here is to bring up some non-standard peptide features that have been used to build classical ML predictive models. Secondly, it is valuable to highlight emerging ML algorithms and alternative computational tools to predict/design AMPs as well as to explore their chemical space. Another point worthy of mention is the recent application of evolutionary algorithms that actually simulate sequence evolution to both the generation of diversity-oriented peptide libraries and the optimization of hit peptides. Last but not least, included here some new considerations in proteogenomic analyses currently incorporated into the computational workflow for unravelling AMPs in natural sources.

3.
Toxins (Basel) ; 13(11)2021 11 05.
Article in English | MEDLINE | ID: mdl-34822568

ABSTRACT

Bivalves constitute an important source of proteins for human consumption, but some accumulate biotoxins such as diarrhetic shellfish toxins (DSTs), constituting a risk to human health. The cockle Cerastoderma edule is one of the most important species harvested in the Portuguese coast but also one of the most affected species due to recurrent DSTs exposure. However, little is known regarding the effects of the toxins produced by blooming dinoflagellates on C. edule. Herein, we explore the Differentially Expressed Genes (DEGs) of two tissues (gills and digestive gland) from wild cockles sampled in Portugal, through their whole transcriptomic response in two different seasons (exposed and not exposed to DSTs). The de novo transcriptome assembly returned 684,723 contigs, N50 of 1049, and 98.53% completeness. Altogether, 1098 DEGs were identified, of which 353 DEGs were exclusive for the digestive gland, 536 unique for the gills and 209 DEGs were common. Among DEGs were identified known DSTs-biomarkers including glutathione peroxidase, glutathione S-transferase, superoxide dismutase, cytochrome P450, ABC transporters, actin and tubulin-related proteins, Heat shock proteins and complement C1Q-like proteins. This study provides the first transcriptomic profile of C. edule, giving new insights about its molecular responses under different environmental conditions of DSTs exposure.


Subject(s)
Cardiidae/metabolism , Gene Expression , Marine Toxins/analysis , Transcriptome , Animals , Cardiidae/chemistry , Gene Expression Profiling , Portugal , Seasons
4.
Int J Mol Sci ; 22(7)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33806079

ABSTRACT

We focus on the stalked goose barnacle L. anatifera adhesive system, an opportunistic less selective species for the substrate, found attached to a variety of floating objects at seas. Adhesion is an adaptative character in barnacles, ensuring adequate positioning in the habitat for feeding and reproduction. The protein composition of the cement multicomplex and adhesive gland was quantitatively studied using shotgun proteomic analysis. Overall, 11,795 peptide sequences were identified in the gland and 2206 in the cement, clustered in 1689 and 217 proteinGroups, respectively. Cement specific adhesive proteins (CPs), proteases, protease inhibitors, cuticular and structural proteins, chemical cues, and many unannotated proteins were found, among others. In the cement, CPs were the most abundant (80.5%), being the bulk proteins CP100k and -52k the most expressed of all, and CP43k-like the most expressed interfacial protein. Unannotated proteins comprised 4.7% of the cement proteome, ranking several of them among the most highly expressed. Eight of these proteins showed similar physicochemical properties and amino acid composition to known CPs and classified through Principal Components Analysis (PCA) as new CPs. The importance of PCA on the identification of unannotated non-conserved adhesive proteins, whose selective pressure is on their relative amino acid abundance, was demonstrated.


Subject(s)
Adhesives , Peptides/metabolism , Proteogenomics , Proteome , Thoracica/metabolism , Animals , Arthropod Proteins/metabolism , Cluster Analysis , Ecosystem , Molecular Weight , Principal Component Analysis , Proteomics/methods
5.
Antibiotics (Basel) ; 9(11)2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33143020

ABSTRACT

Cephalopods, successful predators, can use a mixture of substances to subdue their prey, becoming interesting sources of bioactive compounds. In addition to neurotoxins and enzymes, the presence of antimicrobial compounds has been reported. Recently, the transcriptome and the whole proteome of the Octopus vulgaris salivary apparatus were released, but the role of some compounds-e.g., histones, antimicrobial peptides (AMPs), and toxins-remains unclear. Herein, we profiled the proteome of the posterior salivary glands (PSGs) of O. vulgaris using two sample preparation protocols combined with a shotgun-proteomics approach. Protein identification was performed against a composite database comprising data from the UniProtKB, all transcriptomes available from the cephalopods' PSGs, and a comprehensive non-redundant AMPs database. Out of the 10,075 proteins clustered in 1868 protein groups, 90 clusters corresponded to venom protein toxin families. Additionally, we detected putative AMPs clustered with histones previously found as abundant proteins in the saliva of O. vulgaris. Some of these histones, such as H2A and H2B, are involved in systemic inflammatory responses and their antimicrobial effects have been demonstrated. These results not only confirm the production of enzymes and toxins by the O. vulgaris PSGs but also suggest their involvement in the first line of defense against microbes.

6.
Toxins (Basel) ; 12(8)2020 07 31.
Article in English | MEDLINE | ID: mdl-32752012

ABSTRACT

Diarrhetic shellfish toxins (DSTs) are among the most prevalent marine toxins in Europe's and in other temperate coastal regions. These toxins are produced by several dinoflagellate species; however, the contamination of the marine trophic chain is often attributed to species of the genus Dinophysis. This group of toxins, constituted by okadaic acid (OA) and analogous molecules (dinophysistoxins, DTXs), are highly harmful to humans, causing severe poisoning symptoms caused by the ingestion of contaminated seafood. Knowledge on the mode of action and toxicology of OA and the chemical characterization and accumulation of DSTs in seafood species (bivalves, gastropods and crustaceans) has significantly contributed to understand the impacts of these toxins in humans. Considerable information is however missing, particularly at the molecular and metabolic levels involving toxin uptake, distribution, compartmentalization and biotransformation and the interaction of DSTs with aquatic organisms. Recent contributions to the knowledge of DSTs arise from transcriptomics and proteomics research. Indeed, OMICs constitute a research field dedicated to the systematic analysis on the organisms' metabolisms. The methodologies used in OMICs are also highly effective to identify critical metabolic pathways affecting the physiology of the organisms. In this review, we analyze the main contributions provided so far by OMICs to DSTs research and discuss the prospects of OMICs with regard to the DSTs toxicology and the significance of these toxins to public health, food safety and aquaculture.


Subject(s)
Marine Toxins/toxicity , Animals , Biomarkers , Biotransformation , Food Safety , Genomics , Humans , Proteomics , Shellfish , Shellfish Poisoning/etiology , Shellfish Poisoning/metabolism
7.
Biofouling ; 36(6): 631-645, 2020 07.
Article in English | MEDLINE | ID: mdl-32715767

ABSTRACT

Cyanobacteria promote marine biofouling with significant impacts. A qualitative proteomic analysis, by LC-MS/MS, of planktonic and biofilm cells from two cyanobacteria was performed. Biofilms were formed on glass and perspex at two relevant hydrodynamic conditions for marine environments (average shear rates of 4 s-1 and 40 s-1). For both strains and surfaces, biofilm development was higher at 4 s-1. Biofilm development of Nodosilinea sp. LEGE 06145 was substantially higher than Nodosilinea sp. LEGE 06119, but no significant differences were found between surfaces. Overall, 377 and 301 different proteins were identified for Nodosilinea sp. LEGE 06145 and Nodosilinea sp. LEGE 06119. Differences in protein composition were more noticeable in biofilms formed under different hydrodynamic conditions than in those formed on different surfaces. Ribosomal and photosynthetic proteins were identified in most conditions. The characterization performed gives new insights into how shear rate and surface affect the planktonic to biofilm transition, from a structural and proteomics perspective.


Subject(s)
Biofilms , Cyanobacteria , Plankton , Proteomics , Chromatography, Liquid , Tandem Mass Spectrometry
8.
Mar Drugs ; 18(7)2020 Jul 13.
Article in English | MEDLINE | ID: mdl-32668814

ABSTRACT

Ascidians are marine invertebrates associated with diverse microbial communities, embedded in their tunic, conferring special ecological and biotechnological relevance to these model organisms used in evolutionary and developmental studies. Next-generation sequencing tools have increased the knowledge of ascidians' associated organisms and their products, but proteomic studies are still scarce. Hence, we explored the tunic of three ascidian species using a shotgun proteomics approach. Proteins extracted from the tunic of Ciona sp., Molgula sp., and Microcosmus sp. were processed using a nano LC-MS/MS system (Ultimate 3000 liquid chromatography system coupled to a Q-Exactive Hybrid Quadrupole-Orbitrap mass spectrometer). Raw data was searched against UniProtKB - the Universal Protein Resource Knowledgebase (Bacteria and Metazoa section) using Proteome Discoverer software. The resulting proteins were merged with a non-redundant Antimicrobial Peptides (AMPs) database and analysed with MaxQuant freeware. Overall, 337 metazoan and 106 bacterial proteins were identified being mainly involved in basal metabolism, cytoskeletal and catalytic functions. 37 AMPs were identified, most of them attributed to eukaryotic origin apart from bacteriocins. These results and the presence of "Biosynthesis of antibiotics" as one of the most highlighted pathways revealed the tunic as a very active tissue in terms of bioactive compounds production, giving insights on the interactions between host and associated organisms. Although the present work constitutes an exploratory study, the approach employed revealed high potential for high-throughput characterization and biodiscovery of the ascidians' tunic and its microbiome.


Subject(s)
Pore Forming Cytotoxic Proteins/metabolism , Proteome , Proteomics , Urochordata/metabolism , Animals , Chromatography, Liquid , Databases, Protein , High-Throughput Screening Assays , Host-Pathogen Interactions , Microbiota , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Urochordata/microbiology
9.
Int J Mol Sci ; 21(7)2020 Apr 05.
Article in English | MEDLINE | ID: mdl-32260514

ABSTRACT

Adhesive secretion has a fundamental role in barnacles' survival, keeping them in an adequate position on the substrate under a variety of hydrologic regimes. It arouses special interest for industrial applications, such as antifouling strategies, underwater industrial and surgical glues, and dental composites. This study was focused on the goose barnacle Pollicipes pollicipes adhesion system, a species that lives in the Eastern Atlantic strongly exposed intertidal rocky shores and cliffs. The protein composition of P. pollicipes cement multicomplex and cement gland was quantitatively studied using a label-free LC-MS high-throughput proteomic analysis, searched against a custom transcriptome-derived database. Overall, 11,755 peptide sequences were identified in the gland while 2880 peptide sequences were detected in the cement, clustered in 1616 and 1568 protein groups, respectively. The gland proteome was dominated by proteins of the muscle, cytoskeleton, and some uncharacterized proteins, while the cement was, for the first time, reported to be composed by nearly 50% of proteins that are not canonical cement proteins, mainly unannotated proteins, chemical cues, and protease inhibitors, among others. Bulk adhesive proteins accounted for one-third of the cement proteome, with CP52k being the most abundant. Some unannotated proteins highly expressed in the proteomes, as well as at the transcriptomic level, showed similar physicochemical properties to the known surface-coupling barnacle adhesive proteins while the function of the others remains to be discovered. New quantitative and qualitative clues are provided to understand the diversity and function of proteins in the cement of stalked barnacles, contributing to the whole adhesion model in Cirripedia.


Subject(s)
Proteome/metabolism , Thoracica/metabolism , Animals , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Exocrine Glands/metabolism , Proteome/genetics , Thoracica/genetics
10.
Protein J ; 38(6): 628-639, 2019 12.
Article in English | MEDLINE | ID: mdl-31399888

ABSTRACT

Queen conch (Lobatus gigas) is a marine gastropod endemic to the Caribbean. This species is a cultural symbol, being a significant local food source and the second largest commercial fishery in the region. However, over-exploitation and natural habitat degradation have exerted high survival pressure on this species. This work aims to provide novel proteomic data to highlight the metabolism of the species and to provide an important tool for the understanding of queen conch biology and physiology. Herein, we profiled the whole proteome from 3 organs (gills, digestive gland and muscle) of L. gigas combining gel-free and gel-based techniques. Overall 420 clusters of proteins were identified corresponding to the minimum identification requirement of protein sequence redundancy. Gene ontology and KEGG analysis highlighted 59 metabolic pathways between identified proteins. The most relevant routes according to the number of sequences found per pathway were purine and thiamine metabolism, closely related to nucleotide and carbohydrate metabolism. We also emphasize the high number of proteins associated to the biosynthesis of antibiotics (93 proteins and a total of 28 enzymes), which were among the top-twenty pathways identified by KEGG analysis. The proteomics approach allowed the identification and description of putative markers of oxidative stress, xenobiotic metabolism, heat shock response and respiratory chain for the first time in the species, which could be extremely useful in future investigations for diagnosing and monitoring L. gigas population health.


Subject(s)
Gastropoda/metabolism , Proteome , Animals , Databases, Protein , Proteomics/methods
11.
Genomics ; 111(6): 1720-1727, 2019 12.
Article in English | MEDLINE | ID: mdl-30508561

ABSTRACT

The Harderian gland is a cephalic structure, widely distributed among vertebrates. In snakes, the Harderian gland is anatomically connected to the vomeronasal organ via the nasolacrimal duct, and in some species can be larger than the eyes. The function of the Harderian gland remains elusive, but it has been proposed to play a role in the production of saliva, pheromones, thermoregulatory lipids and growth factors, among others. Here, we have profiled the transcriptomes of the Harderian glands of three non-front-fanged colubroid snakes from Cuba: Caraiba andreae (Cuban Lesser Racer); Cubophis cantherigerus (Cuban Racer); and Tretanorhinus variabilis (Caribbean Water Snake), using Illumina HiSeq2000 100 bp paired-end. In addition to ribosomal and non-characterized proteins, the most abundant transcripts encode putative transport/binding, lipocalin/lipocalin-like, and bactericidal/permeability-increasing-like proteins. Transcripts coding for putative canonical toxins described in venomous snakes were also identified. This transcriptional profile suggests a more complex function than previously recognized for this enigmatic organ.


Subject(s)
Colubridae/metabolism , Gene Expression Regulation/physiology , Harderian Gland/metabolism , Reptilian Proteins/biosynthesis , Snake Venoms/biosynthesis , Transcriptome/physiology , Animals , Colubridae/genetics , Cuba , Reptilian Proteins/genetics , Snake Venoms/genetics
12.
Mar Drugs ; 16(2)2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29364843

ABSTRACT

Cnidarian toxic products, particularly peptide toxins, constitute a promising target for biomedicine research. Indeed, cnidarians are considered as the largest phylum of generally toxic animals. However, research on peptides and toxins of sea anemones is still limited. Moreover, most of the toxins from sea anemones have been discovered by classical purification approaches. Recently, high-throughput methodologies have been used for this purpose but in other Phyla. Hence, the present work was focused on the proteomic analyses of whole-body extract from the unexplored sea anemone Bunodactis verrucosa. The proteomic analyses applied were based on two methods: two-dimensional gel electrophoresis combined with MALDI-TOF/TOF and shotgun proteomic approach. In total, 413 proteins were identified, but only eight proteins were identified from gel-based analyses. Such proteins are mainly involved in basal metabolism and biosynthesis of antibiotics as the most relevant pathways. In addition, some putative toxins including metalloproteinases and neurotoxins were also identified. These findings reinforce the significance of the production of antimicrobial compounds and toxins by sea anemones, which play a significant role in defense and feeding. In general, the present study provides the first proteome map of the sea anemone B. verrucosa stablishing a reference for future studies in the discovery of new compounds.


Subject(s)
Proteomics , Sea Anemones/genetics , Animals , Computational Biology , Gene Ontology , Metalloproteases/biosynthesis , Metalloproteases/chemistry , Microbial Sensitivity Tests , Neurotoxins/biosynthesis , Neurotoxins/chemistry , Peptides/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tissue Extracts/chemistry
13.
Toxins (Basel) ; 9(3)2017 03 01.
Article in English | MEDLINE | ID: mdl-28257074

ABSTRACT

Cnidarian constitutes a great source of bioactive compounds. However, research involving peptides from organisms belonging to the order Zoanthidea has received very little attention, contrasting to the numerous studies of the order Actiniaria, from which hundreds of toxic peptides and proteins have been reported. In this work, we performed a mass spectrometry analysis of a low molecular weight (LMW) fraction previously reported as lethal to mice. The low molecular weight (LMW) fraction was obtained by gel filtration of a Zoanthus sociatus (order Zoanthidea) crude extract with a Sephadex G-50, and then analyzed by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) mass spectrometry (MS) in positive ion reflector mode from m/z 700 to m/z 4000. Afterwards, some of the most intense and representative MS ions were fragmented by MS/MS with no significant results obtained by Protein Pilot protein identification software and the Mascot algorithm search. However, microcystin masses were detected by mass-matching against libraries of non-ribosomal peptide database (NORINE). Subsequent reversed-phase C18 HPLC (in isocratic elution mode) and mass spectrometry analyses corroborated the presence of the cyanotoxin Microcystin-LR (MC-LR). To the best of our knowledge, this finding constitutes the first report of MC-LR in Z. sociatus, and one of the few evidences of such cyanotoxin in cnidarians.


Subject(s)
Anthozoa , Complex Mixtures/analysis , Microcystins/analysis , Animals , Complex Mixtures/chemistry , Marine Toxins , Molecular Weight
14.
Mar Drugs ; 11(8): 2873-81, 2013 Aug 13.
Article in English | MEDLINE | ID: mdl-23945599

ABSTRACT

The phylum Cnidaria is an ancient group of venomous animals, specialized in the production and delivery of toxins. Many species belonging to the class Anthozoa have been studied and their venoms often contain a group of peptides, less than 10 kDa, that act upon ion channels. These peptides and their targets interact with high affinity producing neurotoxic and cardiotoxic effects, and even death, depending on the dose and the administration pathway. Zoanthiniaria is an order of the Subclass Hexacorallia, class Anthozoa, and unlike sea anemone (order Actiniaria), neither its diversity of toxins nor the in vivo effects of the venoms has been exhaustively explored. In this study we assessed some toxicological tests on mice with a low molecular weight fraction obtained by gel filtration in Sephadex G-50 from Zoanthus sociatus crude extract. The gel filtration chromatogram at 280 nm revealed two major peaks, the highest absorbance corresponding to the low molecular weight fraction. The toxicological effects seem to be mostly autonomic and cardiotoxic, causing death in a dose dependent manner with a LD50 of 792 µg/kg. Moreover, at a dose of 600 µg/kg the active fraction accelerated the KCl-induced lethality in mice.


Subject(s)
Anthozoa/chemistry , Marine Toxins/toxicity , Peptides/toxicity , Animals , Chromatography, Gel , Dose-Response Relationship, Drug , Lethal Dose 50 , Male , Marine Toxins/chemistry , Marine Toxins/isolation & purification , Mice , Molecular Weight , Peptides/isolation & purification , Potassium Chloride/toxicity , Toxicity Tests
15.
Toxicon ; 59(2): 306-14, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22155304

ABSTRACT

Cnidarians comprise a taxon with a high biodiversity of cytolitic, neurotoxic and cardiotoxic compounds, which have not been studied on insulin release. We tested the effect of a crude extract of Zoanthus sociatus (Ellis, 1767) and the low molecular weight fraction of this extract on insulin secretion in isolated rat ß-cells and also in a glucose tolerance test in vivo. We observed that the extract inhibited insulin release by reducing the amount secreted by individual ß-cells and also by silencing a fraction of the secreting population. This effect coincided with a diminished rise of intracellular Ca(+2) in response to high glucose and high K+ -induced depolarization. Moreover intraperitoneal administration of the low molecular weight fraction produced glucose intolerance in adult rats. The active fraction exhibited molecular weights similar to the neurotoxins described in the phylum. Our results broaden the toxic effects of cnidarian venoms and show evidence of potential modulators of voltage-gated Ca(+2) channels in this group.


Subject(s)
Anthozoa/chemistry , Calcium Channel Blockers/metabolism , Glucose Intolerance/chemically induced , Insulin-Secreting Cells/drug effects , Insulin/metabolism , Animals , Cell Survival , Electrophoresis, Polyacrylamide Gel/methods , Glucose Intolerance/pathology , Insulin Secretion , Insulin-Secreting Cells/metabolism , Male , Molecular Weight , Rats , Rats, Wistar , Spectrometry, Mass, Electrospray Ionization/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...