Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 230: 123168, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36621734

ABSTRACT

Cellulose nanocrystals (CNCs), as the promising reinforcing fillers in the rubber industry, their surface chemical groups have vital effects on the vulcanization kinetics, cross-linking densities, and mechanical properties of rubber composites. Herein, CNCs with acidic carboxyl (CCA) and alkaline amino groups (CCP) were produced by modifying the sulfonic CNCs (CCS) in environment-friendly ways. Studies found the CCS and CCA with acid groups have obvious inhibiting effects on the vulcanization of natural rubber (NR), while CCP with alkaline amino groups accelerates the vulcanization of NR. Differential scanning calorimeter, Fourier transform infrared spectroscopy, and Electron paramagnetic resonance, etc. were performed to clarify the effecting mechanisms of CNCs surface groups on NR vulcanization. It was found that NR/CCS and NR/CCA nanocomposites vulcanize through radical reactions, and the surface acidic groups of CCS and CCA, i.e., hydroxyl, sulfonate, and carboxyl groups inactivate the sulfur radicals generated during vulcanization and depress the vulcanization activity. The amino groups of the polyethyleneimine of CCP promote the ring opening of sulfur (S8) or the breaking of polysulfide bonds connected to NR molecular chains to form sulfur anion with a strong nucleophilic ability, which leads to the cross-linking of NR/CCP reacts via ionic reaction mainly. The vulcanization rate and cross-linking density of NR/CCP are improved by the ionic reaction. And benefiting from the higher cross-linking density and the reinforcement of CCP, NR/CCP had the best physical and mechanical properties. Our work elucidates the mechanism of the surface chemical groups of CNCs affecting NR vulcanization and may provide ideas for the preparation of high-performance rubber composites reinforced by CNCs.


Subject(s)
Nanocomposites , Nanoparticles , Cellulose/chemistry , Rubber/chemistry , Nanocomposites/chemistry , Nanoparticles/chemistry
2.
Molecules ; 27(22)2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36432134

ABSTRACT

Recently, considerable interest has been focused on developing greener and biodegradable materials due to growing environmental concerns. Owing to their low cost, biodegradability, and good mechanical properties, plant fibers have substituted synthetic fibers in the preparation of composites. However, the poor interfacial adhesion due to the hydrophilic nature and high-water absorption limits the use of plant fibers as a reinforcing agent in polymer matrices. The hydrophilic nature of the plant fibers can be overcome by chemical treatments. Cellulose the most abundant natural polymer obtained from sources such as plants, wood, and bacteria has gained wider attention these days. Different methods, such as mechanical, chemical, and chemical treatments in combination with mechanical treatments, have been adopted by researchers for the extraction of cellulose from plants, bacteria, algae, etc. Cellulose nanocrystals (CNC), cellulose nanofibrils (CNF), and microcrystalline cellulose (MCC) have been extracted and used for different applications such as food packaging, water purification, drug delivery, and in composites. In this review, updated information on the methods of isolation of nanocellulose, classification, characterization, and application of nanocellulose has been highlighted. The characteristics and the current status of cellulose-based fiber-reinforced polymer composites in the industry have also been discussed in detail.


Subject(s)
Cellulose , Nanoparticles , Cellulose/chemistry , Technology , Nanoparticles/chemistry , Food Packaging , Chemical Phenomena
3.
Prog Polym Sci ; 1332022 Oct.
Article in English | MEDLINE | ID: mdl-37779922

ABSTRACT

Recent advances in materials science and engineering highlight the importance of designing sophisticated biomaterials with well-defined architectures and tunable properties for emerging biomedical applications. Click chemistry, a powerful method allowing specific and controllable bioorthogonal reactions, has revolutionized our ability to make complex molecular structures with a high level of specificity, selectivity, and yield under mild conditions. These features combined with minimal byproduct formation have enabled the design of a wide range of macromolecular architectures from quick and versatile click reactions. Furthermore, copper-free click chemistry has resulted in a change of paradigm, allowing researchers to perform highly selective chemical reactions in biological environments to further understand the structure and function of cells. In living systems, introducing clickable groups into biomolecules such as polysaccharides (PSA) has been explored as a general approach to conduct medicinal chemistry and potentially help solve healthcare needs. De novo biosynthetic pathways for chemical synthesis have also been exploited and optimized to perform PSA-based bioconjugation inside living cells without interfering with their native processes or functions. This strategy obviates the need for laborious and costly chemical reactions which normally require extensive and time-consuming purification steps. Using these approaches, various PSA-based macromolecules have been manufactured as building blocks for the design of novel biomaterials. Clickable PSA provides a powerful and versatile toolbox for biomaterials scientists and will increasingly play a crucial role in the biomedical field. Specifically, bioclick reactions with PSA have been leveraged for the design of advanced drug delivery systems and minimally invasive injectable hydrogels. In this review article, we have outlined the key aspects and breadth of PSA-derived bioclick reactions as a powerful and versatile toolbox to design advanced polymeric biomaterials for biomedical applications such as molecular imaging, drug delivery, and tissue engineering. Additionally, we have also discussed the past achievements, present developments, and recent trends of clickable PSA-based biomaterials such as 3D printing, as well as their challenges, clinical translatability, and future perspectives.

4.
Int J Biol Macromol ; 191: 572-583, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34582904

ABSTRACT

Green thermoplastic starch (TPS) nanocomposite films aided by cellulose nanofibers (CNFs) from Chrysopogon zizanioides roots were developed and characterized. When compared to other lignocellulosic fibers, Chrysopogon zizanioides roots revealed exceptionally high cellulose content (~48%). CNFs were separated using an environmentally friendly acid isolation technique that included three stages: (i) alkali treatment; (ii) bleaching; and (iii) mild acid hydrolysis using oxalic acid in an autoclave. Following that, green nanocomposite films were made from potato starch using the solution casting process, by which we used glycerol (30 wt%) to make thermoplastic starch. Then, cellulose nanofibers in different concentrations (0, 1, 2, 3, 4 wt%) were added to the thermoplastic starch matrix. The isolated CNFs had diameters in the range of 17-27 nm. Besides, these nanostructures presented a very high crystallinity index (~65%), thereby enhanced the thermal stability. TPS/CNF green nanocomposites containing 3 wt% CNFs had exceptional tensile strength (~161%), tensile modulus (~167%), thermal stability, and crystallinity. As a result, nanocomposite films made of starch and cellulose nanofibers (3 wt%) extracted from Chrysopogon zizanioides roots would be alternatives for sustainable packaging. It can be concluded that Chrysopogon zizanioides roots have high potential for polymer industry.


Subject(s)
Cellulose/analogs & derivatives , Chrysopogon/chemistry , Nanocomposites/chemistry , Nanofibers/chemistry , Starch/analogs & derivatives , Edible Films , Hydrolysis , Tensile Strength
5.
Carbohydr Polym ; 245: 116505, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32718616

ABSTRACT

In this work, chitin nanowhiskers with high crystallinity index were obtained from shrimp shells waste using acid hydrolysis method and then comprehensively characterized. Subsequently, the impact of chitin nanowhisker content on processing and performance of acrylonitrile-butadiene rubber based nanocomposites was evaluated. The results showed that the addition of chitin nanowhiskers increased tensile strength and tear strength of nanocomposites by 116 % and 54 %, which was related to suitable dispersion of chitin nanowhiskers in matrix. Reinforcing effect of chitin nanowhiskers in acrylonitrile-butadiene rubber was also confirmed by Wolff activity coefficient, glass transition temperature and equilibrium swelling measurements. Moreover, it was found that higher content chitin nanowhiskers significantly improve the thermal stability of studied nanocomposites. The incorporation of chitin nanowhiskers resulted in increase of 74 °C for onset degradation temperature. This work confirmed that shrimp shell waste can be upcycled into chitin nanowhiskers - promising green filler in NBR for high-performance elastomeric applications.


Subject(s)
Acrylonitrile/chemistry , Animal Shells/chemistry , Butadienes/chemistry , Chitin/chemistry , Nanocomposites/chemistry , Penaeidae/chemistry , Rubber/chemistry , Animals , Elasticity , Hydrolysis , Tensile Strength , Transition Temperature
6.
Polymers (Basel) ; 12(4)2020 Apr 04.
Article in English | MEDLINE | ID: mdl-32260346

ABSTRACT

In the present work, we used the steam explosion method for the isolation of cellulose nanofiber (CNF) from Cuscuta reflexa, a parasitic plant commonly seen in Kerala and we evaluated its reinforcing efficiency in natural rubber (NR). Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Thermogravimetric analysis (TGA) techniques indicated that type I cellulose nanofibers, with diameter: 10-30 nm and a 67% crystallinity index were obtained by the proposed method. The results showed that application of CNF in NR based nanocomposites resulted in significant improvement of their processing and performance properties. It was observed that the tensile strength and tear strength of NR/CNF nanocomposites are found to be a maximum at 2 phr CNF loading, which corresponds with the studies of equilibrium swelling behavior. Dynamic mechanical analysis, thermogravimetric analysis, and morphological studies of tensile fractured samples also confirm that CNF isolated from Cuscuta reflexa plant can be considered as a promising green reinforcement for rubbers.

SELECTION OF CITATIONS
SEARCH DETAIL
...