Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 14(8)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37630138

ABSTRACT

Polymeric micropillars with a high-aspect-ratio (HAR) are of interest for a wide range of applications, including drug delivery and the micro-electro-mechanical field. While molding is the most common method for fabricating HAR microstructures, it is affected by challenges related to demolding the final structure. In this study, we present very HAR micropillars using two-photon polymerization (TPP), an established technique for creating complex 3D microstructures. Polymeric micropillars with HARs fabricated by TPP often shrink and collapse during the development process. This is due to the lack of mechanical stability of micropillars against capillary forces primarily acting during the fabrication process when the solvent evaporates. Here, we report different parameters that have been optimized to overcome the capillary force. These include surface modification of the substrate, fabrication parameters such as laser power, exposure time, the pitch distance between the pillars, and the length of the pillars. On account of adopting these techniques, we were able to fabricate micropillars with a very HAR up to 80.

2.
Micromachines (Basel) ; 14(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36677185

ABSTRACT

The miniaturization of tools is an important step in human evolution to create faster devices as well as precise micromachines. Studies around this topic have allowed the creation of small-scale objects capable of a wide range of deformation to achieve complex tasks. Molecular arrangements have been investigated through liquid crystal polymer (LCP) to program such a movement. Smart polymers and hereby liquid crystal matrices are materials of interest for their easy structuration properties and their response to external stimuli. However, up until very recently, their employment at the microscale was mainly limited to 2D structuration. Among the numerous issues, one concerns the ability to 3D structure the material while controlling the molecular orientation during the polymerization process. This review aims to report recent efforts focused on the microstructuration of LCP, in particular those dealing with 3D microfabrication via two-photon polymerization (TPP). Indeed, the latter has revolutionized the production of 3D complex micro-objects and is nowadays recognized as the gold standard for 3D micro-printing. After a short introduction highlighting the interest in micromachines, some basic principles of liquid crystals are recalled from the molecular aspect to their implementation. Finally, the possibilities offered by TPP as well as the way to monitor the motion into the fabricated microrobots are highlighted.

3.
Biomimetics (Basel) ; 4(3)2019 Jul 11.
Article in English | MEDLINE | ID: mdl-31336810

ABSTRACT

Most current methods for the preparation of tissue spheroids require complex materials, involve tedious physical steps and are generally not scalable. We report a novel alternative, which is both inexpensive and up-scalable, to produce large quantities of viable human keratinocyte cell clusters (clusteroids). The method is based on a two-phase aqueous system of incompatible polymers forming a stable water-in-water (w/w) emulsion, which enabled us to rapidly fabricate cell clusteroids from HaCaT cells. We used w/w Pickering emulsion from aqueous solutions of the polymers dextran (DEX) and polyethylene oxide (PEO) and a particle stabilizer based on whey protein (WP). The HaCaT cells clearly preferred to distribute into the DEX-rich phase and this property was utilized to encapsulate them in the water-in-water (DEX-in-PEO) emulsion drops then osmotically shrank to compress them into clusters. Prepared formulations of HaCaT keratinocyte clusteroids in alginate hydrogel were grown where the cells percolated to mimic 3D tissue. The HaCaT cell clusteroids grew faster in the alginate film compared to the individual cells formulated in the same matrix. This methodology could potentially be utilised in biomedical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...