Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(11): e31632, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38828296

ABSTRACT

New particle formation (NPF) is considered a major source of aerosol particles and cloud condensation nuclei (CCN); however, our understanding of NPF and the subsequent particle growth mechanisms in coastal areas remains limited. This study provides evidence of frequent NPF events followed by particle growth in the middle Adriatic Sea during the summer months at the coastal station of Rogoznica in Croatia. To our knowledge, this is the first study to report such events in this region. Our research aims to improve the understanding of NPF by investigating particle growth through detailed physicochemical characterization and event classification. We used a combination of online measurements and offline particle collection, followed by a thorough chemical analysis. Our results suggest the role of bromine in the particle growth process and provide evidence for its involvement in combination with organic compounds. In addition, we demonstrated the significant influence of surface-active substances (SAS) on particle growth. NPF and particle growth events have been observed in air masses originating from the Adriatic Sea, which can serve as an important source of volatile organic compounds (VOC). Our study shows an intricate interplay between bromine, organic carbon (OC), and SAS in atmospheric particle growth, contributing to a better understanding of coastal NPF processes. In this context, we also introduced a new approach using the semi-empirical 1st derivative method to determine the growth rate for each time point that is not sensitive to the nonlinear behavior of the particle growth over time. We observed that during NPF and particle growth event days, the OC concentration measured in the ultrafine mode particle fraction was higher compared to non-event days. Moreover, in contrast to non-event days, bromine compounds were detected in the ultrafine mode atmospheric particle fraction on nearly all NPF and particle growth event days. Regarding sulfuric acid, the measured sulfate concentration in the ultrafine mode atmospheric particle fraction on both NPF event and non-event days showed no significant differences. This suggests that sulfuric acid may not be the primary factor influencing the appearance of NPF and the particle growth process in the coastal region of Rogoznica.

2.
Sci Total Environ ; 865: 161076, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36565878

ABSTRACT

The marine lake (Rogoznica Lake), which fluctuates between stratified and holomictic conditions, is a unique environment on the eastern Adriatic coast affected by environmental changes. These changes are reflected in the warming of the water column, the apparent deoxygenation of the epilimnion, and the accumulation of organic matter (OM), toxic sulfide, and ammonium in the anoxic hypolimnion. Since the early 1990s, the volume of anoxic water has increased as the chemocline has moved to the surface water layer. A trend toward enrichment of refractory dissolved organic carbon (DOC) was observed in the anoxic hypolimnion, while a decreasing trend was observed in the oxic epilimnion in the spring DOC. At the same time, the most reactive surface-active fraction of DOC showed the opposite trend. In addition, there is evidence of accumulation of particulate organic carbon (POC) in the water column, followed by an increase in the fraction of POC in total organic carbon (TOC). On a multi-year scale (1996-2020), this work presents a unique time series of the dynamics of OM in the stratified marine system, showing a significant change in its quantity and quality due to climate and environmental variability. DOC-normalized surfactant activity is shown to be a good indicator of environmental change.

SELECTION OF CITATIONS
SEARCH DETAIL
...